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Program
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Sunday, September 23 

____________________________________________________________________ 

18:30 – 19:30 Registration

19:30 – 20:30 Welcome cocktail
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Monday, September 24 – Morning 

____________________________________________________________________ 

8:30 – 9:00 Registration

9:00 – 9:20 Opening

Session 1

9:20 – 10:10 IT: Matthias Auf der Maur

Current developments in device simulation: degeneracy, arbitrary density of 
states and multi-particle drift-diffusion

10:10 – 10:35 CT: René Pinnau

Semiconductor Optimization, Model Hierarchies & Asymptotic Analysis

10:35 – 11:00 CT: Marco Coco and Vittorio Romano

Charge and phonon transport in suspended monolayer graphene

11:00 – 11:20 Coffee break

Session 2

11:20 – 12:10 IT: Tudor Ionescu

Model reduction for nonlinear systems – a time-domain moment matching 
perspective

12:10 – 12:35 CT: Jan Kühn, Andreas Bartel and Piotr Putek

A Thermal Extension of Tellinen’s Scalar Hysteresis Model

12:35 – 13:00 CT: Armin Fohler and Walter Zulehner

Adaptive Mesh Refinement for Rotating Electrical Machines Taking into Account 
Boundary Approximation Errors

13:00 – 15:00 Lunch
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Monday, September 24 – Afternoon 

____________________________________________________________________ 

Session 3

15:00 – 15:50 IT: Sara Grundel

Simulation and Model Order Reduction of Power Systems

15:50 – 16:15 CT: Onkar Jadhav, Evgenii Rudnyi and Tamara Bechtold

Load Snapshot Based Nonlinear-Input Model Order Reduction of a Thermal 
Human Tissue Model

16:15 – 16:40 CT: Roland Pulch

Frequency-domain integrals for stability preservation in model order reduction

16:40 – 17:05 CT: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina, Aurel Sorin Lup and 
Mihai Popescu

Reduced Order Models for the Simulation of the Saltatory Conduction

17:05 – 17:25 Coffee break

17:25 – 17:50 CT: Orazio Muscato

Direct Simulation Monte Carlo of the Wigner transport equation

17:50 – 18:15 CT: Piotr Putek, E. Jan W. ter Maten and Michael Günther

Shape optimization of a permanent magnet synchronous machine under 
probabilistic constraints

18:15 – 18:40 CT: G. Aiello, S. Alfonzetti, S.A. Rizzo, N. Salerno

Shape optimization of an induction heating device
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Tuesday, September 25 

____________________________________________________________________ 

Session 5

9:00 – 9:50 IT: Omar Morandi

Description of the trajectories of quantum particles by a Quantum Lagrangian 
approach

9:50 – 10:15 CT: Karthik V. Aadithya, Eric R. Keiter and Ting Mei

Predictor/Corrector Newton-Raphson (PCNR): A Simple, Flexible, Scalable, 
Modular, and Consistent Replacement for Limiting in Circuit Simulation

10:15 – 10:40 CT: Kai Bittner, Hans G. Brachtendorf and Wim Schoenmaker

LinzFrame – A Modular Mixed-Level Simulator with Emphasis on Radio 
Frequency Circuits

10:40 – 11:00 Coffee break

Session 6

11:00 – 11:25 CT: Giovanni Nastasi and Vittorio Romano

Simulation of double gate graphene field effect tansistors

11:25 – 11:50 CT: Giovanni Mascali and Vittorio Romano

A hydrodynamic model for 2D-3D electron transport in silicon devices

11:50 – 12:15 CT: Jeroen Tant and Johan Driesen

Analysis and Numerical Solution of Piecewise Smooth Differential Algebraic 
Equations for Power Electronic Circuit Simulation

12:15 – 12:40 CT: Pasquale Claudio Africa, Carlo de Falco and Dario Natali

Scalable Adaptive Numerical Simulation for Organic Thin Film Transistors

13:00 – 15:00 Lunch

15:00 – 17:00 Social tour

20:00 Social dinner
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Wednesday, September 26 – Morning 

____________________________________________________________________ 

Session 7

9:15 – 9:45 IS: Mario Saggio

Title tba

9:45 – 10:15 IS: Tonio Biondi

Data Center Power

10:15 – 10:40 CT: Andreas Blaszczyk, Thomas Christen, Hans K. Meyer and 
Michael Schüller

Surface Charging Formulations for Engineering Applications. Validation by 
Experiments and Transient Models

10:40 – 11:00 Coffee break

Session 8

11:00 – 11:50 IT: P. Gangl

Topology and Shape Optimization of Electrical Machines

11:50 – 12:15 CT: Julius Zimmermann and Ursula van Rienen

Electromagnetic stimulation chambers for cartilage regeneration

12:15 – 12:40 CT: Konstantin Butenko, Andrea Böhme and Ursula van Rienen

Open Source Simulation Platform for Deep Brain Stimulation

12:40 – 14:40 Lunch
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Wednesday, September 26 – Afternoon 

____________________________________________________________________ 

Session 9

14:40 – 15:30 IT: Jay Gopalakrishnan

Techniques for modeling fiber laser amplifiers

15:30 – 15:55 CT: Nicolas Marsic and Herbert De Gersem

Optimized Schwarz methods for Helmholtz problems in a closed domain

15:55 – 16:20 CT: Peter Gangl, Ulrich Langer, Angelos Mantzaflaris and 
Rainer Schneckenleitner

Isogeometric Simulation and Shape Optimization with Applications to Electrical 
Machines

16:20 – 16:40 Coffee break

16:40 – 17:20 Poster shot gun presentation

17:20 – 19:00 Poster session
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Thursday, September 27 

____________________________________________________________________ 

Session 10

9:00 – 9:50 IT: Bilen Emek Abali

Modeling mechanochemistry in Li-ion batteries

9:50 – 10:15 CT: Ioannis Deretzis and Antonino La Magna

Multiscale atomistic modeling for materials science applications

10:15 – 10:40 CT: A. Bermúdez, D. Gómez and D. González-Peñas

Thermo-electrical analysis of indirect resistance heating furnaces combining 
numerical simulation and lumped models

10:40 – 11:00 Coffee break

Session 11

11:00 – 11:50 IT: Steffen Börm

GCA-H2 matrix compression for electrostatic simulations

11:50 – 12:15 CT: Siyang Hu, Chengdong Yuan and Tamara Bechtold

Quasi-Schur Transformation for the Stable Compact Modeling of Piezoelectric 
Energy Harvester Devices

12:15 – 12:40 CT: A.K. Tyagi, X. Jonsson, T.G.J. Beelen and W.H.A. Schilders

An Unbiased Hybrid Importance Sampling Monte Carlo Approach for Yield 
estimation in Electronic Circuit Design

12:40 – 13:05 CT: Herbert Egger, Bogdan Radu

A mass-lumped mixed finite element method for Maxwell’s equations

13:05 Closing
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Modeling mechanochemistry in Li-ion batteries
B. Emek Abali1

Technische Universität Berlin, Einsteinufer 5, 10587 Berlin, Germany bilenemek@abali.org

Summary. Mechanoschemistry in Li-ion batteries involve
interaction of ions migrating in a cell with mechanical
stresses as well as electromagnetic fields. We aim at model-
ing this multiphysics in a battery cell by involving balance
equations and MAXWELL equations. Before applying spe-
cific assumptions relevant for Li-ion batteries, we address
developing a complete theory by using continuum mechan-
ics and thermodynamics.

1 Objective of this study

Consider a battery cell composed of electrodes, binder,
polymer, and ions diffusing between as well as in-
tercalating into the electrodes during charge and dis-
charge. At any given point all constituents build the
bulk. Basically, we have different constituents de-
noted by α and their corresponding mass and mo-
mentum equations need to be fulfilled. Technically,
it is challenging to measure velocity of every con-
stituent, vvvα , accurately. Therefore, constitutive rela-
tions involving this quantity fail to be feasible. In or-
der to overcome this restriction, we introduce a diffu-
sion flux JJJα = ρα(vvvα−vvv) as the relative velocity of a
constituent with the partial mass density ρα with re-
spect to the bulk velocity vvv. The partial mass density,
ρα = Mα cα , is given by the molar mass, Mα , and the
concentration, cα , which is the molar density. Then
we find a constitutive equation relating the diffusion
flux to other measurable quantities like concentration
such that the constituents’ velocities never occur in
the formulation. In this setting, we have the following
mass and momentum equations for the bulk as well as
for the constituents

∂ρ

∂ t
+

∂ρvi

∂xi
= 0 ,

∂ρα

∂ t
+

∂

∂xi

(
ρ

α vi + Jα
i

)
= kα ,

∂ρvi

∂ t
+

∂

∂x j

(
v jρvi +σ ji

)
= Fi ,

(1)

where we employ EINSTEIN’s summation conven-
tion over repeated indices. Apart from the constitutive
equations for CAUCHY’s stress of the bulk, σσσ , and
for the diffusion flux of each constituent, JJJα , subject
to a chemical reaction given by the rate kα ; we need
to define the interaction between mechanics and elec-
tromagnetism by defining the electromagnetic (pon-
deromotive) force density, FFF . Especially the defini-

tion of this quantity is very challenging and there ex-
ists no consensus between the scientific community,
see for example [4, 6, 12, 13]. We follow the method
of derivation used in [10, Eq. (15)], [9, Chap. 1], [8,
Chap. XIV], [7, Chap. 8], [11, Sect. 3.3] in the follow-
ing and introduce a very general identity,

∂ Gi

∂ t
=

∂m ji

∂x j
−Fi , (2)

between the electromagnetic momentum density, GGG ,
electromagnetic stress, mmm, and the electromagnetic
force density, FFF . This relation is in analogy with the
balance of momentum such that the names stress and
momentum are justified. If the electromagnetic mo-
mentum, GGG , is defined, as a consequence of the lat-
ter relation we can propose the electromagnetic stress
and the electromagnetic force density. By following
[3] we emphasize that different choices are perfectly
appropriate.

The measurable electromagnetic fields are the elec-
tric field EEE and the magnetic flux (area density) BBB de-
fined by solving two of four MAXWELL equations as
follows:

Ei =−
∂φ

∂xi
− ∂Ai

∂ t
, Bi = εi jk

∂Ak

∂x j
, (3)

where the electromagnetic potentials φ , AAA are sought
after, εi jk is the LEVI-CIVITA symbol. In order to
solve the scalar (electric) potential, φ , we use the bal-
ance of electric charge combined by one MAXWELL
equation,

∂ρz
∂ t

+
∂Ji

∂xi
= 0 , ρz =

∂Di

∂xi
, (4)

respectively, where the specific charge, z, is related to
the total charge potential, DDD, and the electric current,
JJJ, of the total charge reads

Ji = Jfr.
i +

∂Pi

∂ t
+ εi jk

∂ Mk

∂x j
, (5)

with the electric current of free charges, JJJfr., elec-
tric polarization, PPP, and magnetic polarization, MMM ,
all to be given by constitutive equations. In order to
solve the vector (magnetic) potential, AAA, we use the
final MAXWELL equation augmented by the LORENZ
gauge,

10



2

−∂Di

∂ t
+ εi jk

∂Hk

∂x j
= Ji ,

∂φ

∂ t
+

1
ε0µ0

∂Ai

∂xi
= 0 , (6)

respectively, where the LORENZ gauge is an appropri-
ate choice for numerical solutions, see [2] for imple-
mentation and applications. The universal constants:

ε0 = 8.85 ·10−12 A s/(V m) ,

µ0 = 12.6 ·10−7 V s/(A m) ,
(7)

and the MAXWELL–LORENTZ aether relations:

Di = ε0Ei , Hi =
1
µ0

Bi , (8)

are used to combine the electromagnetic fields with
the (total) charge potential, DDD, and the (total) current
potential, HHH.

For the interaction between mechanics and elec-
tromagnetism, we can choose one of the existing elec-
tromagnetic momenta, see [5, 14] for different possi-
bilities. Herein, we choose the POYNTING vector:

Gi = (DDD×BBB)i , (9)

leading to the following electromagnetic stress and
force

m ji =−
1
2

δ ji(HkBk +DkEk)+HiB j +D jEi ,

Fi = ρzEi + εi jkJ jBk ,
(10)

where in this setting mmm is called MAXWELL stress and
FFF is named after LORENTZ.

We have briefly presented the governing equations
modeling mechanochemistry in a battery cell. We aim
at solving mass density, ρ , and velocity, vvv, of the bulk
as well as concentrations, cα , of all constituents tak-
ing part in the chemical reaction called intercalation
at the electrode by satisfying Eq. (1). Moreover, we
need to solve Eqs. (4), (6) in order to obtain electro-
magnetic fields, EEE, BBB, by using Eq. (3). For being able
to solve the governing equations, we have to close
them by defining JJJα , kα , σσσ , PPP, MMM , JJJfr. as constitu-
tive equations depending on {ρ,vvv,cα ,EEE,BBB}. We sug-
gest to follow [1, Chap. 3] for deriving the constitu-
tive equations by using principle of thermodynamics
as well as for generating the weak form. The weak
form is the necessary input for a computational simu-
lation in multiphysics.

Acknowledgement. B. E. Abali acknowledges the Daimler
and Benz Foundation Postdoctoral Scholarship 2018.
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Current developments in device simulation: degeneracy, arbitrary
density of states and multi-particle drift-diffusion

Matthias Auf der Maur1

Dept. Electronics Engineering, University of Rome Tor Vergata, Via Politecnico 1, 00133 Rome, Italy
auf.der.maur@ing.uniroma2.it

Summary. In recent years the well established drift-dif-
fusion model for semiconductors has returned into focus in
relation with the development of new devices and materials.
The standard formulation of the model and its discretiza-
tion are based on a number of assumptions, which are not
always valid and require modifications for certain device
types and materials currently of interest. We will show that,
while still remaining in the framework of drift-diffusion, we
can formulate more generalized schemes allowing to simu-
late a larger class of devices and physical effects.

1 Introduction

The drift-diffusion model, also known as the van Roos-
broeck system [5], has been the work horse of elec-
tronic device simulation during the last 50 years. This
well known model in its usual formulation [6] is based
on a set of three partial differential equations, namely
two continuity equations for the electron and hole
flow, and the Poisson equation for the calculation of
the mean electrostatic field:

∂n
∂ t

+∇ jn =−R+G (1a)

∂ p
∂ t

+∇ jp =−R+G (1b)

−∇(ε∇ϕ) =−e(n− p+C). (1c)

Here, n and p are the electron and hole densities, re-
spectively. R and G are the recombination and gen-
eration rates, jn and jp are the electron and hole
fluxes. In the Poisson equation (1c) ε denotes the
permittivity, while e is the elementary charge and C
is the net charge density due to e.g. dopants. ϕ is
the electrostatic potential. Two constitutive equations
connect the carrier fluxes with the densities and the
electrostatic potential, most often written in the drift-
diffusion form

jn =−Dn∇n+µnn∇ϕ (2a)
jp =−Dp∇p−µp p∇ϕ, (2b)

where Dn,p are the diffusion constants and µn,p the
mobilities. The most important basic assumption of
the model (1) is that electrons and holes are in a local
thermal quasi equilibrium, so that their densities can

be written in terms of a quasi Fermi level or electro-
chemical potential as e.g. for electrons

n =
∫

∞

−∞

D(E) f (E −EF,n)dE , (3)

where D(E) is the density of states and f (x) is the
Fermi-Dirac distribution. In many practical imple-
mentations the Boltzmann approximation is used to
get the familiar expression n = Nc exp

(
EF,n−Ec

kBT

)
.

While this model has been developed for the de-
scription of electron and hole transport in inorganic
semiconductors like silicon and gallium arsenide, it
has been subsequently applied to other materials, in
particular organics, electrochemical systems and novel
materials like Perovskites. Moreover, it is often ap-
plied in device structures where some of the basic as-
sumptions and approximations may be globally or lo-
cally violated, like quantum confined structures, het-
erostructures or transistors with short gates.

To some extent, the standard drift-diffusion model
as given in (1) can be adjusted to give reasonable re-
sults even in such situations by carefully designing
models for the mobility and the recombination terms,
for example, or by resorting to Schrödinger/Poisson
type of setups, or multiphysics/multiscale coupling to
more involved models [2]. Other cases, however, re-
quire modifications of the model formulation or the
discretization scheme.

Here we show some examples of situations, where
a reformulation of the model can lead to a more sound
description of the device physics, without however
sacrificing important advantages of the drift-diffusion
model like its computational effectiveness.

2 Degeneracy and arbitrary density of
states

Today, in a large number of device structures the va-
lidity of the Boltzmann approximation or the assump-
tion of the density having an exponential or Fermi
integral type of dependency on the potentials do not
hold. Especially, in organic electronics the density of
states (DOS) is completely different from that of in-
organic cristalline semiconductors. In fact, the macro-
scopic DOS in the latter is in most cases due to a
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2

disordered spatial and energetic distribution of energy
levels of localized states [1]. Although still an approx-
imation, often a gaussian density of states is assumed
for organic materials, to be used in (3). This clearly
modifies the functional dependency of the density on
the potentials, and reduces the range of validity of
the Boltzmann approximation. Similarly, in quantum
confined structures the local DOS obtained from a
quantum mechanical model can be used. Hoever, any
deviation from a Boltzmann form of the densities re-
quires a subtle modification in the transport equations.
In fact, the diffusion constants and mobilities are not
independent, but they are related by means of an Ein-
stein relation of the form Dn = q−1n(∂n/∂EF,n)

−1
µn,

which in Boltzmann approximation reduces to Dn =
kBT/qµn. This is well known, and usually called dif-
fusion enhancement [3]. Note that this could have
measurable effects on device performance. As an ex-
ample, we report in Fig. 1 the predicted dependancy
of the rate of change of the open circuit voltage of a
solar cell with light intensity, for different DOS [1].
Unfortunately, this not only leads to a nonlinear dif-
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s
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B
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B
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Fig. 1. Effect of the diffusion enhancement on the depen-
dency of the solar cell open circuit voltage on the optical
generation rate.

fusion, but it also affects the discretization. In fact, it
is well known that standard discretization approaches
like finite differences or finite elements of (1) and (2)
lead to an unstable scheme. The state of the art solu-
tion is to use the Scharfetter-Gummel (SG) approach
in conjunction with a finite volume discretization [3].
However, the SG scheme is strictly valid only in the
Boltzmann approximation and must be adapted if this
is not the case. Therefore, discretization schemes for
the drift-diffusion equations have regained interest in
the last years.

3 Multi-particle drift-diffusion

One of the limitations of the drift-diffusion model
is the assumption of two equilibrium populations. In

a series of devices one could define sub-populations
which are individually in quasi equilibrium. For ex-
ample, in multi quantum well structures as used for
light emitting diodes (LEDs) the quantum confined
carrier populations are coupled by thermal emission
and capture processes to the free carriers, which can
be assumed to be much slower than typical intraband
relaxation. In such a situation, we can formally split
the populations and couple them explicitly by suitable
generation-recombination terms describing emission
and capture. Similarly, the intermediate band (IB)
concept is of interest in the field of photovoltaics [4],
where a small band formed e.g. from quantum dot
states inside the gap of a semiconductor theoretically
allows to increase device efficiency. This can only be
simulated by introducing a third carrier population
with a finite width DOS, having its own quasi Fermi
level.

We have implemented such a multi-particle drift-
diffusion model, and made preliminary tests with sev-
eral device types, like organic LEDs, IB solar cells
and multi quantum wells. The model also allows to
include mobile ions, of interest e.g. for the simulation
of Perovskite devices.

Acknowledgement. The author acknowledges the support
of EU-H2020 project “MOSTOPHOS” (n. 646259) and of
the COST Action MP1406 “MultiscaleSolar”.
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Data Center Power

Tonio Biondi1

1 Maxim Integrated

Summary: During the last decade, the growing demand for internet-related services has fostered
the proliferation of data centers all over the world. At the same time, the increasing requirements in
data storage, processing capability and transmission rates have pushed energy consumption of data
centers  to  a  higher  level.  Therefore,  optimizing  energy  usage  and  improving  power  efficiency
became imperative to minimize environmental, economic and energy supply security impact. In this
work,  the  topic  of  powering  data  centers  is  analyzed  at  different  levels  from infrastructure  to
architecture  to  building  blocks.  The  consolidated  trend  towards  48V power  architectures,  as  a
replacement of the commoditized 12V architectures, is discussed with special emphasis on power
efficiency benefits.  Design challenges  and methodologies  are  described with a  focus  on power
integration.
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GCA-H 2 matrix compression for electrostatic simulations
Steffen Börm1 and Sven Christophersen1

Department of Mathematics, University of Kiel, 24118 Kiel, Germany
boerm@math.uni-kiel.de, christophersen@math.uni-kiel.de

Summary. We consider a compression method for bound-
ary element matrices arising in the context of the com-
putation of electrostatic fields. Green cross approximation
combines an analytic approximation of the kernel function
based on Green’s representation formula and quadrature
with an algebraic cross approximation scheme in order to
obtain both the robustness of analytic methods and the ef-
ficiency of algebraic ones. One particularly attractive prop-
erty of the new method is that it is well-suited for accelera-
tion via general-purpose graphics processors (GPGPUs).

Boundary integral formulations for electrostatic field
problems typically lead to equations of the form∫

∂Ω

g(x,y)u(y)dy = λu(x)+
∫

∂Ω

∂g
∂ny

(x,y)v(y)dy

for all x ∈ ∂Ω , where Ω ⊆ IR3 is a domain, λ ∈ IR, u
and v are scalar functions on the boundary ∂Ω , and

g(x,y) =
1

4π‖x− y‖

is the fundamental solution of Laplace’s equation.
Discretization by Galerkin’s method with basis

functions (ϕi)i∈I leads to a matrix G ∈ IRI×I given
by

gi j =
∫

∂Ω

ϕi(x)
∫

∂Ω

g(x,y)ϕ j(y)dydx (1)

for all i, j ∈ I , and all of these coefficients are typi-
cally non-zero. In order to find a data-sparse approx-
imation of G, we consider a domain τ ⊆ IR3 and a
superset ω ⊆ IR3 such that the distance from τ to the
boundary ∂ω of ω is non-zero. For any y ∈ IR3 \ω ,
the function x 7→ g(·,y) is harmonic in ω , so we can
apply Green’s third identity to obtain

g(x,y) =
∫

∂ω

g(x,z)
∂g
∂nz

(z,y)− ∂g
∂nz

(x,z)g(z,y)dz

for all x ∈ τ and y ∈ IR3 \ω . If the distances between
∂ω and τ and between ∂ω and y are sufficiently large,
the integrand is smooth, and we can approximate the
integral by a quadrature rule to find

g(x,y)≈
k

∑
ν=1

wν g(x,zν)
∂g
∂nz

(zν ,y)

−wν

∂g
∂nz

(x,zν)g(zν ,y) (2)

with weights wν and quadrature points zν , and in this
approximation the variables x and y are separated.

This gives rise to a first low-rank approximation
of G: given subsets τ̂, σ̂ ⊆I of the index set, we can
introduce the corresponding supports

τ :=
⋃
i∈τ̂

suppϕi, σ :=
⋃
j∈σ̂

suppϕ j,

and if these sets are well-separated, we can find a
superset ω of τ such that its boundary ∂ω is suffi-
ciently far from both τ and σ . Replacing g in (1) by
the quadrature-based approximation leads to a factor-
ized approximation

G|τ̂×σ̂ ≈ Aτ,σ B∗τ,σ ,

with Aτ,σ ∈ IRτ̂×2k and Bτ,σ ∈ IRσ̂×2k, so the rank of
the approximation is bounded by 2k.

In order to make the approximation more efficient,
we can apply adaptive cross approximation [1] to de-
rive the algebraic counterpart of interpolation: this
technique provides us with a small subset τ̃ ⊆ τ̂ and a
matrix Vτ ∈ IRτ̂×τ̃ such that

Vτ Aτ,σ |τ̃×2k ≈ Aτ,σ ,

i.e., we can reconstruct Aτ,σ using only a few of its
rows. Since Aτ,σ is a thin matrix, we can afford to use
reliable pivoting strategies and do not have to rely on
heuristics. We conclude

Vτ G|τ̃×σ̂ ≈Vτ Aτ,σ |τ̃×2kB∗τ,σ ≈ Aτ,σ B∗τ,σ ≈ G|τ̂×σ̂ ,

i.e., the algebraic interpolation can also be applied di-
rectly to the original matrix G instead of the low-rank
approximation. This is called a Green cross approxi-
mation (GCA).

We can apply the same reasoning to the columns
to obtain σ̃ ⊆ σ̂ and Vσ ∈ IRσ̂×σ̃ with

G|τ̂×σ̂ ≈Vτ G|τ̃×σ̃V ∗σ ,

and this turns out to be a very efficient approxima-
tion of the matrix block, since G|τ̃×σ̃ is usually sig-
nificantly smaller than G|τ̂×σ̂ .

We can improve the construction further by re-
presenting the basis matrices Vτ and Vσ in a hierar-
chy: assume that τ̂ is subdivided into disjoint sub-
sets τ̂1 and τ̂2 and that matrices Vτ1 ,Vτ2 and subsets
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τ̃1 ⊆ τ̂1, τ̃2 ⊆ τ̂2 have already been constructed. We let
τ̃1,2 := τ̃1∪ τ̃2 and observe

Aτ,σ =

(
Aτ,σ |τ̂1×2k
Aτ,σ |τ̂2×2k

)
≈
(

Vτ1Aτ,σ |τ̃1×2k
Vτ2Aτ,σ |τ̃2×2k

)
=

(
Vτ1

Vτ2

)
Aτ,σ |τ̃1,2×2k,

and applying cross approximation to the right factor
allows us to express Vτ recursively in terms of Vτ1 and
Vτ2 . Since τ̃1,2 is usually significantly smaller than τ̂ ,
this construction is more efficient than the straightfor-
ward GCA approach. The resulting GCA-H 2-matrix
compression algorithm can be proven to have almost
optimal complexity [3]. Its result is a special case of
the more general H 2-matrix structure [2, 4].

Once the sets τ̃ and σ̃ are known, the entries of
the matrix G|τ̃×σ̃ can be constructed independently,
and this property makes this part of the algorithm
very attractive for general-purpose graphics proces-
sors (GPGPUs).

n Vτ (CPU) G|τ̃×σ̃ (GPU)
8192 0.1s 0.2s

32768 0.4s 0.7s
131072 1.5s 2.7s
524288 6.2s 11.8s

2097152 62.0s 64.1s

Fig. 1. Run-times for the setup of the GCA-H 2 matrix for
the single layer integral operator

Compressing the single layer integral operator on
a unit sphere approximated by n triangles using piece-
wise constant basis functions with an error tolerance
that ensures that the solution of the integral equation
is approximated at full accuracy yields the run-times
given in Figure 1.

The column “Vτ ” corresponds to the time for the
row and the column basis, although both are identi-
cal for the symmetric matrix considered here. Since
the basis construction is an adaptive process, we use a
general-purpose processor, in this case an Intel Core
i7-3820 with four cores, to handle this part of the al-
gorithm.

The column “G|τ̃×σ̃ ” gives the time for both far-
field matrices, i.e., matrices handled by the GCA-
H 2 approximation, and nearfield matrices that are
computed by the well-known Sauter-Schwab quadra-
ture technique [5]. This task is well-suited for mas-
sively parallel computing, and we employ an NVIDIA
GeForce GTX 680 card.

For the last line we had to increase the order of
the Green quadrature in (2) to preserve the full dis-
cretization accuracy, this explains the larger increase
in run-time compared to the previous lines. We can
conclude that our approach allows us to discretize ge-
ometries with more than two million degrees of free-

dom on a standard (if a little outdated) workstation in
approximately two minutes.
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Summary. We perform design optimization of electrical
machines by means of the topological derivative and the
shape derivative for two-dimensional nonlinear magneto-
statics. In order to control the complexity of the arising
structure and ensure manufacturability, we include a bound
on the perimeter of the design. We show results for the op-
timization with respect to two materials (iron, air) as well
as an extension to also include a third material (permanent
magnet) into the optimization.

1 Problem Description

For the design optimization of an electric motor, we
consider its two-dimensional cross-section, see Fig.
1 for a model problem. The computational domain D
comprises areas of ferromagnetic material (Ωf; brown),
air regions (Ωair; dark blue), coil areas (Ωc; light
blue), and permanent magnets (Ωmag; orange) which
are magnetized in the indicated directions.

Our goal is to determine the optimal material dis-
tribution inside a fixed design subdomain Ω d of the
electric motor such that a given objective function is
minimized. On the one hand, we consider the distri-
bution of two materials (ferromagnetic material and
air) and, on the other hand, also the optimization with
respect to three materials (ferromagnetic material, air
and permanent magnet). In the case of two materials,
we are facing the following problem:

min
Ω

J (u) (1a)

s.t.−div(νΩ (x, |∇u|)∇u) = F(x) in D, (1b)
u = 0 on ∂D, (1c)

where the optimization variable Ω denotes the vari-
able ferromagnetic subset of the design subdomain.
The state variable u is the third component of the
magnetic vector potential of the magnetic flux den-
sity, B = curl(0,0,u). The magnetic recluctivity νΩ

is a nonlinear function depending on |∇u| in the fer-
romagnetic subdomains and piecewise constant else-
where,

νΩ (x, |∇u|) =


ν̂(|∇u|) x ∈Ωf,

ν0 x ∈Ωair∪Ωc,

νmag x ∈Ωmag.

The right hand side F comprises the impressed cur-
rent density in the coils as well as the permanent mag-
netization,

F(x) = χΩc(x)Ji(x)−χΩmag(x)νmagdivM⊥(x).

We consider different objective functionals J .
For instance, we maximize the average torque over
different rotor positions, or we minimize a functional
which yields a smooth rotation of the rotor.

Fig. 1. Model problem with design area Ω d

2 Design Optimization

We approach the design optimization problem (1) by
means of a two-stage algorithm: in the first stage, the
topology is optimized using the topological derivative
concept, and in the second stage shape optimization
is performed as post-processing.

2.1 Stage I: Topology Optimization

We employ the level set algorithm [1] in which the
evolution of the design is guided by the topological
derivative. Therefore, topological changes of the ge-
ometry can easily be achieved.
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The topological derivative of a domain-dependent
functional J = J(Ω) denotes the functional’s sensitiv-
ity with respect to a local change of material around
an interior point. The topological derivative of the
optimization problem (1), which is constrained by a
quasilinear partial differential equation, was derived
in [2].

2.2 Stage II: Shape Optimization

The shape derivative denotes the sensitivity of a domain-
dependent objective function with respect to smooth
perturbations of the boundary of a domain or of a ma-
terial interface. As a post-processing of the final de-
sign obtained in Stage I, we perform a gradient-based
shape optimization algorithm based on the shape deriva-
tive of problem (1), see also [4].

3 Interface Handling

In the course of the optimization algorithm of Section
2, the material interface between ferromagnetic mate-
rial and air inside the design area Ω d evolves. How-
ever, in each step of the optimization algorithms, the
state equation (1b)–(1c) as well as an adjoint equation
have to be solved, which is done by the finite element
method. In order to ensure accurate approximate so-
lutions, we employ a local mesh adaptation strategy
in order to resolve the material interfaces. We show
optimal order of convergence and introduce a precon-
ditioner for which optimal conditioning of the precon-
ditioned system can be observed.

4 Manufacturability

Problem (1) only accounts for the optimization of
the electromagnetic performance of the electric mo-
tor and does not take into account important other as-
pects such as the manufacturability of the design or its
mechanical stability when rotating with high speed.

We can restrict the complexity of the designs aris-
ing in the optimization by controlling the perimeter of
the design Ω , e.g., by replacing the objective function
in (1a) by

J̃ (u,Ω) := J (u)+β Per(Ω)

with β > 0.
For the perimeter functional Per(Ω), the topologi-

cal derivative cannot be computed [3]. However it can
be approximated by a quantity Perδ (Ω), which con-
verges to Per(Ω) as δ approaches zero, for which the
topological derivative was derived in [3].

In order to incorporate a bound on the complexity
of the structure, we consider the regularized design
optimization problem

minJ (u)+β Perδ (Ω)

s.t. (1b)− (1c)
(2)

an solve this problem for a decreasing sequence (δn)n.
Here, the complexity can be controlled by choosing
different weights β , see Fig. 2.

β = 2.5 β = 0.5

β = 0.1 β = 0

Fig. 2. Optimization results for (2) for different values of β .

5 Multi-material Optimization

We also consider the case, where the design area Ω d

may be occupied by not only two, but three different
materials, namely by ferromagnetic material, air and
permanent magnet material. For this purpose, we ex-
tend the level set algorithm [1] to the case of three ma-
terials by introducing an R2-valued level set function.
We include a penalization of the permanent magnet
volume on the one hand, and of the perimeter of the
design on the other hand.
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Summary. Numerical techniques for simulation of electro-
magnetic wave propagation within fiber amplifiers are dis-
cussed. Since a full-featured simulation using the Maxwell
system on a realistic fiber is beyond reach, simplified mod-
els form the state of the art. This work presents a novel con-
cept of equivalent short fiber, an artificial fiber, which while
imitating a longer fiber in certain aspects, requires only a
fraction of the computational resources needed to simulate
the full length fiber.

1 Fiber amplifiers

Fiber amplifiers are typically circularly symmetric
double-clad step-index fibers. They have a core that
is usually doped with lanthanide rare-earth metallic
elements like Thulium or Ytterbium. They are used to
amplify input signal light by transferring energy from
pump light. Pump light energizes dopant ions to ex-
cited radiative states. Stimulated emission of signal
photons follows.

The ability of solid-state fiber laser amplifiers to
deliver high output power has been exploited and
studied over the last few decades [1]. The rate of in-
crease in average output power realized over these
years seems to have hit a roadblock when transverse
modal instabilities (TMI) were experimentally ob-
served found at high powers. These observations have
led to intensive speculations on the cause of TMI, the
prevailing theory being that the cause is a temperature-
induced grating. Reliable numerical simulation of TMI
and other nonlinear optical effects within fibers can
provide important insights for validating or rejecting
various physical hypothesis put forth to explain these
effects. These techniques must however be able to nu-
merically solve the field propagation within a long
fiber a vast number of times.

2 Hierarchy of models

Starting from first principles, we introduce gain terms
through polarization. It can be seen, by mathemati-
cally comparing with the familiar conductivity terms,
that such gain terms must cause light amplification.

We then outline a hierarchy of models for numer-
ical simulation, ranging from the most-expensive but

full-fidelity Maxwell system, to the quicker but low-
fidelity approaches such as the Couple Mode Theory
(CMT) model. The CMT model uses an electric field
ansatz based on the transverse guided modes of the
fiber, which can be approximated by finite elements.
Although the field problem is reduced to one that can
be sent to an ordinary differential equation (ODE)
system solver, even the CMT model is computation-
ally demanding due to the many transverse finite el-
ement integrations required along a long fiber. With
this perspective, we review the significant contribu-
tions made so far in the optics community [1–3] in
the numerical modeling of fiber laser amplifiers.

3 Equivalent short fiber

We present a new equivalent short fiber concept. In
various fields of study, physical or numerical scale
models of an object have been used – they preserve
some of the important properties of the object while
not preserving the original dimensions of the object.
In the context of fiber amplifiers, its natural to seek a
miniature scale model that reduces fiber length while
preserving the remaining dimensions. By reducing
the number of transverse integrations required within
the ODE solver, an equivalent shorter fiber can bring
about drastic reductions in computational cost. We
show that this is indeed feasible under certain con-
ditions.
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Summary. For nonlinear systems, high dimension and com-
plexity are two major issues in dealing with models suitable
for (nonlinear) analysis, simulation and control. Even if the
high dimension is reduced, complexity may increase as op-
posed to linear systems where these notions are identical.
Therefore, suitable model reduction is called for. This has
been studied recently in the time-domain moment matching
framework, where suitable notions of moment have been in-
troduced and families of parameterized reduced order mod-
els have been developed. The degrees of freedom are used to
enforce/preserve properties or topology, increase accuracy,
etc. Same ideas apply to the case of infinite-dimensional
systems such as, e.g., time-delayed systems, PDE-based
models, etc. where families of finite-dimensional systems
can be achieved based on moment matching.

1 Introduction

Nowadays we are living in a more complex and inter-
connected world in all areas. Mathematical tools yield
complex and highly dimensional dynamical models
(e.g., from partial-differential equations, networks of
large numbers of subsystems, etc), gathered under
the name of large-scale systems. Hence, for purposes
such as simulation and control design, scientists and
engineers need tweaking of such models rendering
them simpler and useful. To this end, model reduc-
tion is called for. The main idea of model order reduc-
tion is to find a low-order mathematical model that
approximates the given large-scale dynamical sys-
tem. The approximation is accurate if the approxima-
tion error is small and if the most important physical
structure/properties, such as stability or energy dissi-
pation, of the given system are preserved.

Typically, the model reduction problem is formu-
lated as follows. Given a dynamical system

ẋ = f (x,u, t), x(0) = x0, y = h(x,u, t). (1)

where x(t) ∈ Rn, is the state of the system, u(t) ∈ Rm

is the input and y(t) ∈ Rp represents the output of the
system. t ∈ R represents the time. By reducing this
system, we mean to find a system

˙̂x = f̂ (x̂,u, t), ŷ = ĥ(x̂,u, t), (2)

with x̂(t) ∈ Rr, ŷ(t) ∈ Rp such that

• r < n,
• system (2) preserves the properties/structure of

system (1) for certain analysis/control purposes,
• system (2) approximates system (1) under cer-

tain criteria and within an error bound,
• system (2) is easy to compute.
A category of computationally-efficient model re-

duction techniques are based on moment matching,
see, e.g., [2, 5] and [1] for an overview for linear sys-
tems. In such techniques the (reduced order) model
is obtained by constructing a lower degree rational
function that approximates the original transfer func-
tion. The low degree function matches the original
transfer function and its derivatives at various points
in the complex plane. The low order system is com-
puted employing Krylov projections yielding numer-
ically efficient algorithms (see e.g., [1, 6, 8]).

More recently, in [3, 4, 12] new definitions of mo-
ments in a time-domain framework have been given.
This equivalent definition of moments is in the re-
lation with the steady-state response (if it exists) of
the system driven by a signal generator (a novel in-
terpretation of the results in [7]). The moments of a
linear system are defined in terms of the solution of
a Sylvester equation. The reduced order model that
achieves moment matching at ν points is a parametric
model, the degree of freedom being used such that
certain properties are preserved. Based on the dual
Sylvester equation, a new definition of moment dual
to the previous one is obtained. The reduced order
model that achieves moment matching at ν points is
also a parametric one.

Based on this time-domain notion of moment match-
ing, several goals have been achieved, leading to a
nice and fruitful theory of moment matching for non-
linear systems (also adapted to infinite-dimensional
systems). We present some of the main results of the
past eight years and very recently obtained in this di-
rection. The results are mainly ideas of how to use the
degrees of freedom to achieve specific goals, as well
as extensions of well-known ideas of moment match-
ing to the nonlinear case.
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2 Main time-domain moment matching
results

2.1 Nonlinear moment matching - system driven
by a signal generator [4]

Consider the single-input, single-output,

ẋ = f (x,u), y = h(x), (3)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and f and h are
smooth mappings, such that f (0,0) = 0 and h(0) = 0
and the signal generator ω̇ = s(ω),η = l(ω). Con-
sider the interconnected system

ω̇ = s(ω), ẋ = f (x, l(ω)), y = h(x). (4)

A family of reduced order models, all achieving mo-
ment matching at {s, l}, is described by

Σδ (ξ ) :

{
ξ̇ = s(ξ )−δ (ξ )l(ξ )+δ (ξ )u,

ψ = h(π(ξ )),
(5)

with ξ (t) ∈ Rν , where δ is a free parameter.

3 Nonlinear moment matching, a new
approach - the signal generator driven by
the system [11]

In this section we present a new general framework
for nonlinear moment matching based on ”swapping”
the interconnection between the system and the (gen-
eralized) signal generator.

Consider the nonlinear system ξ̇ = ϕ(ξ ,u),η =
ψ(ξ ) and the signal generator ϖ̇ = q(ϖ ,v), ϖ(0) =
0, d =υυυ(ϖ ,x). Assume there exists γ such that χ(γ(ξ ),ξ )=
0. Then the system matches the moments of (3) at q,
if and only if(

∂ χ(ϖ ,ξ )

∂ϖ
q(ϖ −ζ ,ψ(ξ ))+

∂ χ(ϖ ,ξ )

∂ξ
ϕ(ξ ,u)

)∣∣∣∣
ϖ=γ(ξ )

=
∂υυυ(ϖ ,x)

∂x
[ f (x,u)− f (x,0)]

∣∣∣∣
ϖ=ρ(x),x=α(ξ )

.

(6)

A family of models ξ̇ =ϕ(ξ ,u),η =ψ(ξ ) parametrized
in ψ that achieves moment matching is characterized
by a mapping ϕ satisfying

∂ χ(ϖ ,ξ )

∂ξ

∣∣∣∣
ϖ=γ(ξ )

ϕ(ξ ,0)+
∂ χ(ϖ ,ξ )

∂ϖ
q(ϖ −ζ ,ψ(ξ ))]

∣∣∣∣
ϖ=γ(ξ )

= 0, (7)

under certain assumptions.

3.1 Two-sided moment matching [9, 11]

In this section we give the nonlinear counterpart of
[10, Proposition 1], i.e., we compute the subfamily of
models of order ν that match the moments at {s, l}

and the moments at {q̄,r} (a more explicit form of
the generalized signal generator), of a given nonlinear
system, simultaneously.

Indeed, under mild assumptions, there exists a
subfamily of models that match both nonlinear mo-
ments simultaneously. In the linear case, the fami-
lies of models ΣG and ΣH that match the moments at
two sets of different moments at distinct interpolation
points have a unique model in common that matches
the moments form both sets simultaneously.

Furthermore, in the linear case, if the interpola-
tion points are not distinct, there exists one model
that matches the moments of the transfer function
and its derivative simultaneously at the set of inter-
polation points chosen. Simulations illustrate that in-
deed, matching the moments of the transfer function
and its derivative lead to a decrease of the H2-norm
of the approximation error. Other significant results
are presented, including approximation of time-delay
systems, port-Hamiltonian systems etc.

References

1. A. C. Antoulas. Approximation of large-scale dynami-
cal systems. SIAM, Philadelphia, 2005.

2. A. C. Antoulas, J. A. Ball, J. Kang, and J. C. Willems.
On the solution of the minimal rational interpola-
tion problem. Linear Algebra & its Applications,
137/138:511–573, 1990.

3. A. Astolfi. A new look at model reduction by moment
matching for linear systems. In Proc. 46th IEEE Conf.
on Decision and Control, pages 4361–4366, 2007.

4. A. Astolfi. Model reduction by moment matching for
linear and nonlinear systems. IEEE Trans. Autom.
Contr., 50(10):2321–2336, 2010.

5. C. de Villemagne and R. E. Skelton. Model reduc-
tions using a projection formulation. Int. J. Control,
46:2141–2169, 1987.

6. K. Gallivan and P. Van Dooren. Rational approxima-
tions of pre-filtered transfer functions via the Lanczos
algorithm. Numerical Algorithms, 20:331–342, 1999.

7. K. Gallivan, A. Vandendorpe, and P. Van Dooren.
Sylvester equations and projection based model reduc-
tion. J. Comp. Appl. Math., 162:213–229, 2004.

8. W. B. Gragg and A. Lindquist. On the partial real-
ization problem. Linear Algebra & its Applications,
50:277–319, 1983.

9. T. C. Ionescu. Two-sided time-domain moment match-
ing for linear systems. IEEE Trans. Autom. Contr.,
61(9):2632–2637, 2016.

10. T. C. Ionescu and A. Astolfi. Families of reduced order
models that achieve nonlinear moment matching. In
Proc. American Control Conference, pages 5518–5523,
2013.

11. T. C. Ionescu and A. Astolfi. Nonlinear moment
matching-based model order reduction. IEEE Trans.
Autom. Contr., 61(10):2837–2847, 2016.

12. T. C. Ionescu, A. Astolfi, and P. Colaneri. Families of
moment matching based, low order approximations for
linear systems. Systems & Control Letters, 64:47–56,
2014.

21



Description of the trajectories of quantum particles by a Quantum
Lagrangian approach.

Omar Morandi1
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Summary. A quantum model based on a Euler-Lagrange
variational approach is proposed. In analogy with the clas-
sical transport, our approach maintain the description of the
particle motion in terms of trajectories in a configuration
space. Our method is designed to describe correction to the
motion of nearly localized particles due to quantum phe-
nomenas. We focus on the simulation of the motion of light
nuclei in ab initio calculations. We discuss the connection
of our results with the Bohm trajectories approach.

1 Introduction

During the last decade, the dynamics of molecules
and the optical properties of nanostructures have been
extensively investigated. Numerical methods based
on ab initio approaches constitute a very important
tool to understand the dynamics the optical properties
of nanostructures.

New concepts such as the deterministic and the
stochastic quantum trajectories have been proposed
to develop new ab initio methods that go beyond the
classical description of the atomic nuclei. One of the
major advantages of developing a method that ex-
tends the concept of classical trajectory to the quan-
tum mechanical context, is that the molecular dynam-
ics solvers already developed my be easily extended
to integrate such a new theory.

We derive the motion of a quantum particle by
using a integral formulation of the equation of mo-
tion. We assume that the particle is described by a
Gaussian-like wave packet parametrized by a set of
numbers that depend on time. We formulate the dy-
namics of the particle wave function in terms of a
variational Euler-Lagrange problem. By minimizing
the action of the quantum Lagrangian of the particle,
we derive the evolution equations for the parameters.

Our approach is particularly suited to describe the
motion of heavy particles that have a quasi-classical
behavior as for example the neutrons and the protons.
We will discuss the application of our Lagrangian
method to describe the quantum correction to the 2D
motion of heavy particles in the presence of confining
non harmonic potentials. In particular, the connection
with the Bohm interpretation of the quantum mechan-
ics will be presented.

2 Model

Our model is based on the quantum Lagrangian for-
mulation of the evolution equation of a d−dimensional
quantum system. The motion is formulated in terms
of a system of coupled ODE obtained by the Euler-
Lagrange equation related to the following Lagrangian

L =
∫
Rd

[
Im
(
ψ

†
∂tψ
)
− 1

2
|∇ψ|2−U |ψ|2

]
∏dxi

(1)

where ψ is the quantum wave function of the system
and U is the potential. In order to obtain a treatable
system, we expand the solution over a complete set of
Hermite polynomials. Details of the model are given
in [1]. Our method is adapted to treat nearly localized
quantum particles. In order to illustrate our results,
in Fig. 1 we depict the evolution of the variance of a
single particle system in the presence of an external
double well potential. In particular, we compare the
results obtained with our approach with the direct so-
lution of the Schrödinger equation and with the pop-
ular Gaussian beam approximation that shares close
similarities with our method.
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Fig. 1. Time evolution of the variance of the wave func-
tion. The red solid curve is obtained by using the Euler-
Lagrange method, the blue solid curve is obtained by solv-
ing the Schrödinger equation and the green dotted curve is
obtained by taking the standard Gaussian approximation
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Predictor/Corrector Newton-Raphson (PCNR): A Simple, Flexible, Scalable,
Modular, and Consistent Replacement for Limiting in Circuit Simulation

Karthik V. Aadithya, Eric R. Keiter, and Ting Mei

Sandia National Laboratories, Albuquerque, New Mexico, USA. Email: {kvaadit,erkeite,tmei}@sandia.gov

Summary. Limiting (the practice of improving the convergence
of Newton-Raphson (NR) solves by preventing some quantities
(e.g., the voltages across diodes) from changing too much between
successive iterations) has become indispensable in circuit simula-
tion. But its implementation tends to be inflexible, non-modular,
inconsistent, and confusing. We propose PCNR, a replacement for
limiting that overcomes these disadvantages. The key ideas behind
PCNR are, (1) to add each limited quantity as an extra unknown to
the circuit’s Modified Nodal Analysis (MNA) system of equations,
(2) to split each NR iteration into a “prediction” phase followed
by a “correction” phase, and (3) to mitigate the computational cost
of the extra unknowns by eliminating them from all Ax = b solves
using a Schur complement based technique.

1 An illustrative example

Fig. 1. The circuit we use to illustrate key ideas in this abstract.

Consider the circuit in Fig. 1; it contains two parallel
diodes D1 and D2 (with saturation currents IS1 and IS2 re-
spectively), in series with a resistor R, driven by a DC volt-
age source vsrc. In Sect. 2, we use this circuit to highlight
the problems with existing limiting implementations. Then,
in Sect. 3, we use the same circuit to introduce the key ideas
behind PCNR, which we then generalize into a powerful re-
placement for limiting that works for all circuits.

2 Problems with traditional limiting

The MNA equations [1, 2] for the circuit in Fig. 1 are:

g


e1

e2
i


︸ ︷︷ ︸

x

=



i+ IS1

(
e

e1−e2
VT −1

)
︸ ︷︷ ︸

D1

+ IS2

(
e

e1−e2
VT −1

)
︸ ︷︷ ︸

D2

−IS1

(
e

e1−e2
VT −1

)
︸ ︷︷ ︸

D1

− IS2

(
e

e1−e2
VT −1

)
︸ ︷︷ ︸

D2

+ e2
R

e1− vsrc


= 0, (1)

where VT is the thermal voltage.
The equations take the form g(x) = 0,1 where x is the

vector of unknowns the simulator has to solve for. This is
normally done by NR iteration [1, 3, 4]; the simulator starts
with an initial guess x0, and repeatedly refines it (into succes-
sively better guesses x1, x2, etc.) until a close enough approx-
imate solution is found. Each iteration requires computing g,

1 PCNR works for differential-algebraic equations as well, but for
simplicity, we only consider algebraic equations in this abstract.

as well as its Jacobian with respect to x, at a new guess xi.
The simulator does this by calling each device in the circuit,
requesting it to calculate its branch currents and charges at
xi, and then assembling these into vectors/matrices accord-
ing to the circuit’s topology [1,2,5]. For example, (1) shows
the values calculated by the diodes D1 and D2. However, the
exponentials in these calculations often adversely affect NR
convergence. So, it is necessary to prevent the diode voltages
from changing too much between successive iterations. This
idea is called limiting [1, 5, 6]. To implement limiting, each
diode keeps track of both the current guess xi and the previ-
ous guess xi−1; when called by the simulator, instead of do-
ing calculations at xi as requested, each diode computes an
intermediate point x̂i between xi−1 and xi (using a method
like pnjlim [1, 7]), and does all calculations at x̂i [1, 5, 6].

There are several problems with this approach. First, g
and its Jacobian are no longer functions of just x; they also
depend on the history of x. This adds confusion and breaks
the clean mathematical abstractions underlying circuit sim-
ulation theory [5]. For example, evaluating g twice on the
same x can result in two completely different answers. Sec-
ond, this approach is fundamentally inconsistent. For exam-
ple, the diodes D1 and D2 above would assume very differ-
ent values for the same branch voltage e1− e2, making both
g and its Jacobian inconsistent, and hence difficult to ana-
lyze mathematically [1, 5]. Third, by requiring each device
to know about previous iterations and other analysis-specific
context information, this approach increases code complex-
ity and reduces modularity; we believe it is the simulator’s
(and not the devices’) responsibility to keep track of the anal-
ysis context, NR iterations, etc.

3 PCNR: Our replacement for limiting

In Sect. 2, we saw that different devices in a circuit may try to
limit the same branch voltage, leading to inconsistencies in
the evaluation of g and its Jacobian. For example, the diodes
D1 and D2 from Fig. 1 both try to limit the same branch
voltage e1− e2. The root cause of this problem is that tradi-
tional MNA only treats node voltages (like e1 and e2), and
not branch voltages (like vD1 and vD2 from Fig. 1) as un-
knowns [1,2,5]. This creates “clashes” between limiting de-
vices that share node connections. Instead, if we treat limited
quantities as unknowns in their own right, we can eliminate
these clashes (and the inconsistencies they induce) by mak-
ing sure that each device “owns” all the solution variables
that it limits. This is our first key insight: in PCNR, we treat
each limited quantity as a circuit unknown; this increases
system size, but as we show below, the extra computational
burden can be quite effectively mitigated.

Figure 2 shows the PCNR flow. At the top, we see that the
PCNR vector x of unknowns contains all the original MNA
unknowns (xMNA), as well as all the limited quantities (xlim).
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(identity sub-matrix)
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Independent initialization by 
different devices/sub-circuits

Predict

Independent limiting by 

different devices/sub-circuits

Correct

Sparse Schur complement based Ax=b solve 

of same size as original MNA system

Fig. 2. The generalized PCNR flow that replaces limiting, and its application to the circuit shown in Fig. 1.

For example, when PCNR is applied to the circuit of Fig. 1,
the limited branch voltages vD1 and vD2 become additional
unknowns, owned by the diodes D1 and D2 respectively.

Thus, the diode D1 (D2), when called by the simulator,
can simply do all its calculations at the current iteration’s
vD1 (vD2 ), instead of having to keep track of the evolution of
the branch voltage e1−e2 between the previous iteration and
this one. This is shown in gMNA, the top part of g, as depicted
in Fig. 2. The bottom part of g (denoted glim) is obtained
by simply writing equations expressing the limited quantities
xlim in terms of the original MNA unknowns xMNA; in our
circuit, this means equating both the limited voltages vD1 and
vD2 to e1− e2 (Fig. 2). In similar fashion, as the top right of
Fig. 2 shows, we split the Jacobian dg/dx into four block
sub-matrices, of which the bottom right sub-matrix (Jlim/lim)
is guaranteed to be identity. Thus, in PCNR, both g and its
Jacobian are functions of just x (and not the history of x),
which ensures simplicity and consistency.

The bottom half of Fig. 2 shows a flowchart for solving
circuits using PCNR. This brings us to our second key in-
sight: in PCNR, each NR iteration is split into two phases –
a “prediction” phase followed by a “correction” phase. The
prediction phase is identical to traditional NR (without lim-
iting); at the ith iteration, the following update is applied:

xi+1 = xi−

(
dg
dx

∣∣∣∣
xi

)−1

g(xi), for i≥ 0.

The naı̈ve way to apply the above involves solving a
sparse Ax = b problem of size |xMNA|+ |xlim|. But we can
reduce the size to just |xMNA|, by exploiting the identity sub-
matrix structure above to efficiently eliminate the limited
quantities using the Schur complement (dg/dx)/Jlim/lim [8]
(Fig. 2 shows the equations involved). This is our third key
insight; it enables us to effectively mitigate the computa-
tional cost of the extra unknowns introduced by PCNR. Also,
it can be shown that PCNR never takes more iterations than
traditional limiting, which ensures scalability. Finally, in the
correction phase, the updates computed during the predic-
tion phase are limited, by requesting each device/sub-circuit

to limit the solution variables it owns. So, in PCNR, limit-
ing is explicitly invoked by the simulator, rather than being
implicitly done by the devices without the simulator’s knowl-
edge. This increases both modularity and flexibility.

Thus, PCNR is a simple, scalable, and easy-to-understand
replacement for limiting. It allows device models to use a
stateless API to communicate with circuit simulators, and
frees them from cumbersome bookkeeping, which is espe-
cially attractive for next-generation CPU + GPU architec-
tures. Also, since PCNR reduces code complexity and in-
creases modularity and flexibility, we believe that it can be
used to rapidly develop and test robust limiting strategies at
the device, sub-circuit, and circuit levels – for mainstream
as well as newly emerging devices. Finally, we believe that
PCNR’s generic predictor/corrector flow opens the door to
developing limiting-inspired heuristics to accelerate NR con-
vergence in domains outside circuit simulation.

References

1. L. W. Nagel. SPICE2: A computer program to simulate semi-
conductor circuits. PhD thesis, The University of California at
Berkeley, 1975.

2. C. W. Ho, A. Ruehli, and P. Brennan. The modified nodal ap-
proach to network analysis. IEEE Transactions on Circuits and
Systems, 22(6):504–509, 1975.

3. J. Roychowdhury. Numerical simulation and modelling of elec-
tronic and biochemical systems. Foundations and Trends in
Electronic Design Automation, 3(2–3):97–303, 2009.

4. A. L. Sangiovanni-Vincentelli. Computer Design Aids for VLSI
Circuits, chapter Circuit Simulation, pages 19–112. Springer,
Netherlands, 1984.

5. E. R. Keiter, S. A. Hutchinson, R. J. Hoekstra, T. V. Russo, and
L. J. Waters. Xyce R© parallel electronic simulator design: Math-
ematical formulation. Technical Report SAND2004-2283, San-
dia National Laboratories, Albuquerque, NM, USA, 2004.

6. W. H. Kao. Comparison of quasi-Newton methods for the DC
analysis of electronic circuits. Master’s thesis, The University
of Illinois at Urbana-Champaign, 1972.

7. T. Wang and J. Roychowdhury. Well-posed models of memris-
tive devices. ArXiv e-prints, May 2016.

8. https://en.wikipedia.org/wiki/Schur_
complement.

27

https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Schur_complement


Scalable Adaptive Numerical Simulation for Organic Thin Film
Transistors

Pasquale Claudio Africa1, Carlo de Falco1, and Dario Natali2,3

1 MOX Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32,
20133, Milano, Italy carlo.defalco@polimi.it, pasqualeclaudio.africa@polimi.it

2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano,
Italy dario.natali@polimi.it

3 Center for Nano Science and Technology, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy

Summary. We present a step-by-step procedure enabling
to determine critical model parameters – such as the density
of states width, the carrier mobility and the injection barrier
– by fitting experimental data from a sequence of relatively
simple measurements to 2D and 3D numerical simulations
under different regimes.

1 Introduction

The accurate knowledge of relevant physical parame-
ters is crucial to determine the predictive accuracy of
numerical models for organic semiconductor devices.
We present a step-by-step procedure enabling to de-
termine critical model parameters – such as the den-
sity of states width, the carrier mobility and the injec-
tion barrier – by fitting experimental data from a se-
quence of relatively simple measurements to 2D and
3D numerical simulations under different regimes.

The current presentation extends the results of [?,
?] where 1D models were used both for transient sim-
ulation of Metal-Insulator-Semiconductor (MIS) ca-
pacitors and for the estimating the DC transfer char-
acteristics of Organic Thin-Film Transistors in the lin-
ear regime. The newly developed multi-dimensional
simulator allows to account in a more natural way
for a set of inherently 2D and 3D phenomena, such
as: the non-planarity of the semiconductor/insulator
interface (due to the solution processing of materi-
als); parasitic capacitances due to coupling between
metal layers; the boundary condition at the semicon-
ductor/substrate interface; contact resistance due to
current-crowding effects. The devices being consid-
ered in this study are shown in figure 1.

2 Numerical methods for 2D and 3D
simulation

In order to deal with the increased complexity of nu-
merical simulations in the new geometrical setting ef-
ficient numerical methods based on a hierarchically
refined oct- and quad-tree meshes [?] have been im-
plemented. The use of such meshes allows, on the

one hand, for the straightforward definition of robust
monotone discretization schemes and, on the other
hand it allows for an efficient and highly scalable
implementation. Furthermore, by using a suitable re-
cently developed recovery-based a-posteriori error es-
timator to drive adaptive mesh refinement [?] (see fig-
ures 2 and 3) the simulation efficiency is highly im-
proved.

Fig. 1. Top and side view of the devices used: the MIS ca-
pacitor at the top and the OTFT at the bottom. Reprinted
with permission from [?]. Copyright Elsevier 2015.
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Fig. 2. Example of an a posteriori estimator driven mesh
adaptation at the semiconductor/insulator interface in a
benchmark MIS structure.
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(a) Vg = 0 V (b) Vg = 20 V

Fig. 3. Example of an a posteriori estimator driven mesh adaptation at the semiconductor/insulator interface in a benchmark
FET structure at different gate biases. Electric field distribution in the device and electric field isolines are shown.
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Abstract The optimization of the cross section of an ax-
isymmetric induction heating device is performed by means
of stochastic methods. The formulation of the problems
takes into account skin and proximity effects in the source
currents. The hybrid FEM - DBCI method is used to deal
with the unbounded nature of the field.

1 Introduction

Shape optimization of electromagnetic devices thro-
ugh the use of stochastic methods, such as Simulated
Annealing (SA) and Genetic Algorithms (GA), im-
plies numerous FEM (Finite Element Method) solu-
tions with different geometries. This leads to high
computational cost, especially if the basic problem is
complicated by non-linearities and/or open boundary
domains. In this paper the optimization of the shape
of an axisymmetric induction heating device in open
boundaries and in the presence of skin and proximity
is addressed. It will be shown how the use of the hy-
brid FEM-DBCI (Dirichlet Boundary Condition Iter-
ation method [1–3] for the solution of the unbounded
field problem allows us to reduce substantially the
computing time of the whole optimization process.

2 FEM-DBCI formulation

Consider the axisymmetric device shown in Fig. 1,
in which a massive copper coil with a given time-
harmonic source current I heats a passive circular
metallic cylinder of radius R (half the system is de-
picted in Fig.1, the r-axis being a symmetry axis). In
the coil the following equation holds [4]:

r2(
∂ 2V
∂ r2 +

∂ 2V
∂ z2 )+3r

∂V
∂ r
− jκ

ν0
(r2V−Φ) =

−I
βν0

(1)

where r, z are the cylindrical coordinates, V = A
r is the

modified magnetic vector potential, ν0 is the vacuum
reluctivity, κ =ωσ with σ the conductivity and ω the
angular frequency of the source current, and:

β =
∫

S

1
r

dS Φ =
1
β

∫
S

rV dS (2)

S being the coil cross section. Equation (1) simplifies
in the cylinder, where I=0 and Φ = 0, and in the air
where σ = 0 also.

        z
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Figure 1. Geometry of the problem.

In order to solve the unbounded problem, FEM-
DBCI is applied by introducing a fictitious truncation
boundary ΓF (see the dotted line in Fig.1) on which
the unknown Dirichlet condition is expressed through
the integral relation:

V (PF) =−
1
rF

∫
ΓM

(
∂ rV
∂n

g− rV g
′
)dS (3)

where ΓM is a closed surface external to the conduc-
tors but enclosed by ΓF , n is the unit vector normal to
ΓF , PF is a node on ΓF , rF is its r-coordinate and g and
g’ are two influence functions given by (r̄ = r/4π):

g = r̄
∫ 2π

0

cosθ

rP′PF

dθ g
′
= r̄

∫ 2π

0

∂

∂n′
cosθ

rP′PF

dθ (4)

which can be evaluated by elliptic integrals [4]. Appli-
cation of the FEM leads to the algebraic system [4]:

MV = D−MFVF (5)
VF = HV (6)

where V and VF are the arrays of the values of the po-
tential V at the internal and boundary nodes, respec-
tively, M is a square symmetric matrix of coefficients,
MF is a rectangular matrix, D is the known term ar-
ray due to the source current I, and H comes from the
discretization of (4). The hybrid system (5)-(6) is con-
veniently solved by iteration: starting from an initial
guess for VF, (5) is solved for V, which is used in (6)
to improve VF. The procedure is iterated until conver-
gence takes places. Once the system(5)-(6) is solved,
the current density in the passive cylinder is computed
as: J =−jωσrV .

3 Reducing the optimization time

Assume that uniform heating is desired on the cylin-
der surface (the segment A’B’ in Fig.1), as required in
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the quenching of steel manufactures. The following
objective function to be minimized can be selected:

f =
1
|I|2 ∑

n
(|Jn|−J0)

2 =(
ωσR
|I|

)2
∑
n
(|Vn|−V0)

2 (7)

where the summation is extended to the nodes in A’B’
and J0 and V0 are the mean absolute values of the
current density J and of the magnetic potential V in
A’B’. The optimization of the device is achieved by
modifying the profile AB of the coil in front of the
cylinder. In order to reduce the computing time of
the whole optimization, a convenient approach is to
foresee a regular mesh of 2 ·M ·N triangles (M sub-
divisions along r, N along z) in the ABCD rectangle,
which constitutes the admissible region for the profile
(a total of (M + 1)N possible configurations). In this
way the mesh is the same for all the analyses in the
optimization; only the conductivity of some finite el-
ements changes from σ to zero or vice versa from one
analysis to the next. This allows us to avoid a full pre-
processing session for each analysis. Post-processing
can also be avoided since the objective function (7)
can be evaluated from the nodal field values directly
without any further manipulation. In addition the al-
gebraic systems (5)-(6) in the optimization can be
built in an economic way if the first analysis is led
for the maximum coil section (that is, for the case in
which the profile of the coil coincides with AB), as
explained in the following. Matrix MF remains un-
changed. Matrix H does not change either if ΓM is
selected to include the cylinder-coil air gap: a good
choice is to select the conductor surfaces linked by the
segment BB’. As far as matrix M is concerned, it can
be built by decomposing the one in the first analysis
M(1), into two parts, M(1)

d and M(1)
i , which refer to the

differential and integral terms on the left hand side in
(1), respectively. So the actual matrix M is first initial-
ized to M(1)

d , and then all the air elements in ABCD
are processed for the contributions of the −jωσr2V
term which are assembled with a change of sign. The
contribution of the integral term is obtained in a sim-
ilar way from the value of β (1) and of the auxiliary
expansion:

Ψ
(1) =

∫
S

rV dS = ∑
i

Ψi Vi (8)

where the integral is extended to the maximum cross
section of the coil and the summation to its nodes.
Processing all the air elements in ABCD by subtract-
ing their contributions from β and Ψ , their correct
values are obtained and from these the contribution
of the integral term. Analogously, after having set the
current I numerically equal to β (this choice is always
possible due to the linearity of equation (1) and im-
plies that the known term of (1) is in all cases equal
to −1/ν0), the actual array D can be built from that
of the first analysis D(1), by processing only the ele-
ments in ABCD whose constitutive parameters have

been changed and by subtracting their contributions
from the above array.

4 Optimization by GAs

Optimizations of the device in Fig.1 is addressed with
the following data: cylinder radius R=12 mm, cylin-
der height h=28 mm, frequency f=100 kHz, AB=8
mm, AD=4.55 mm, AA’=2 mm, µ0 = 4π ·10−7 H/m,
σ = 3.14 ·106 S/m both for the coil and the cylinder.
The domain is discretized by means of 808 second-
order triangular finite elements and 1693 nodes, 17 of
which lie on A’B’. In particular M=7, N=8, are set for
a total of 88 = 16,777,216 different coil shapes. The
end-iteration tolerance is set to δ0 = 1.0%. The bi-
conjugate gradient is used to solve the non-symmetric
system (6). In this paper GAs are used with the char-

�

�
�

)LJ������&RQWRXUV�RI�WKH�PDJQLWXGH�RI�WKH�FXUUHQW�GHQVLW\�-��

IRU�WKH�EHVW�FRQILJXUDWLRQ��
Figure 2. Magnitude of current density for the optimum.

acteristics described in [5]. In Fig.2 the contours of
the magnitude of the current density J for the best con-
figuration are plotted. The optimization of the device
by means of SA will be provided in the full paper.
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Summary. The paper deals with phenomena occurring in
the transmission of neuronal signals along myelinated ax-
ons. Myelinated sections alternate with Ranvier nodes able
to regenerate the transmitted signals, phenomenon known as
saltatory conduction. From the modeling point of view, the
myelinated sections are linear systems, whereas the Ranvier
nodes have a nonlinear behavior. Our aim is to investigate
various ways to obtain reduced models able to catch this
dynamic phenomenon. Models of the linear parts, obtained
after electromagnetic field modeling and order reduction are
coupled with nonlinear models of the the Ranvier nodes.

1 Neuron models

Efficient models of myelinated axons are needed in
the simulation of large scale neuronal circuits. A myeli-
nated axon (Fig. 1) consists of myelinated sections
through which the signal is transmitted, which alter-
nate with Ranvier nodes where the signal is regener-
ated, phenomenon known as saltatory conduction [1].

Cell

body

Synaptic

terminals

Nodes of Ranvier

Myelinated

segment

Fig. 1. The neuronal signal is transmitted along myelinated
axons and regenerated in the Ranvier nodes.

In order to model the transmission of signals through
this chain, the phenomena occurring in the myelinated
sections have to be coupled with the phenomena oc-
curring in the Ranvier nodes. This coupling can be
carried out by means of electric terminals that can be
defined both for the myelinated sections [2] and for
the Ranvier nodes. Consequently, in order to obtain a
reduced model for the axon, both components (called
nodes and internodes) can be modeled separately.

The phenomena occurring in a node is very well
described by the Hodgkin-Huxley (HH) model [3]. Its
mathematical description consists of four nonlinear
ordinary differential equations (1), in which one de-
scribes the capacitive effect, having as state quantity
the membrane voltage V , and the other three describe
the degree of ion channels opening, quantified in 3
gating variables denoted by n for the potassium ions

and m and h for the sodium channels. i(t) is the input
signal that travels and reaches the node thus described
by a zero-dimensional model, involving no space vari-
ables [4].

C dV
dt = −GK(V −EK)−GNa(V −ENa)+ i(t)

dn
dt = αn(V )(1−n)−βn(V )n

dm
dt = αm(V )(1−m)−βm(V )n

dh
dt = αh(V )(1−h)−βh(V )h

(1)
The parameters of (1) have been fitted from experi-
mental data.

• The quantity C is a constant value representing the
capacitance of the node, the corresponding capac-
itor being initially charged at a resting potential of
a typical value of -62.5 mV.

• GK and GNa are the conductances of the potas-
sium and sodium channels respectively and they
depend nonlinearly with respect to the node po-
tential and the gating variables: GK =GKn4, GNa =
GNam3h, where GK and GNa are constants.

• Coefficients α∗ and β∗ have known dependencies
with respect to the node voltage.

• Each ion species has an equilibrium potential known
as batery potential and denoted by EK and ENa in
(1).

• The initial values of the gating variables are also
known, they correspond to a resting state of the
node, in which no signal is traveling.

The phenomena that describe the myelinated sec-
tions are based on a combination of electroquasistatic
and electric conduction field regimes (Fig. 2) that are
responsible for the transmission of the neural signal
along the axon [2].

2 Coupling of sub-models

The coupling between the node and the internode
models can be done easily if they are described as cir-
cuit netlist and circuit simulators are used. This is the
approach used in [5], where simple models were used
for the internodes. Improvements are obtained if the
internode models are refined. In a such approach, the
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EQS:ε,σ2

EC:σ1
V1 V2

dV/dn = 0

Vout

Fig. 2. The myelinated axons can be modeled with a com-
bination of electroquasistatic (EQS) and electric conduction
(EC) regimes.

success of the solving method is restricted by the fa-
cilities offered by the circuit simulator.

For instance, assuming an impulse input signal
i(t) of 6 nA and a chain connection of the reduced
netlist models of 6 nodes separated by 5 myelinated
axons, the voltages of the nodes are shown in Fig. 3.
The figure illustrates the saltatory conduction, in this
example the extracted conduction velocity being of
54.76 m/s.

Fig. 3. Saltatory conduction - as a response to an impulse
current excitation.

The approach we investigate in this paper is based
on the systemic coupling of the node and internode
models.

This has two advantages. On the one hand one
could use directly the reduced order models obtained
from model order reduction procedures, without a
need to realize them as circuits and thus increase ar-
tificially the degrees of freedom of the circuit model
since, usually, this realisation includes a lot of con-
trolled sources. On the other hand, in such an ap-
proach the user can use robust nonlinear ODE solvers
that are already available. In this approach proce-
dures to couple the models are required and they have
to be tailored for the specific significance of the in-
put/output signals that are considered for each consti-
tutive part.

Our final goal is not only to obtain a neuron model
model able to reproduce the saltatory conduction with
acceptable accuracy, but also to obtain the most ap-
propriate global model so that it can be included in
large scale neuronal circuits.
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Summary. This work proposes a methodology to analyze
the thermo-electrical behaviour of indirect heating resis-
tance furnaces at the design stage. More precisely, carrying
out a single 3D numerical simulation of the furnace com-
bined with some subsequent computations on an equivalent
lumped circuit model allow to obtain the power dissipation
in the device (and, as a consequence, the thermal dissipa-
tion) as a function of the current supplied to the system.
The method has been validated in an industrial resistance
furnace devoted to metal purification.

1 Introduction

Indirect resistance heating has an extending applica-
tion in different metallurgical processes. One of its
main advantages is to produce uniform energy distri-
bution over the workpiece, which is essential in many
metal purification processes.

The prediction of the current distribution inside
the resistor of the furnace and the computation of the
power dissipated by Joule effect, is and important and
non trivial matter, which in most cases can be only
performed by numerical computations of the under-
lying electromagnetic models ( [2], [3] or [4]). Con-
trary to other technologies, in this case the bibliogra-
phy relative to the physical and mathematical model-
ing of industrial examples. On the other hand, at the
design stage, it is in general mandatory to know the
response to different inputs so a single simulation is
not enough.

In this work we propose a mathematical model for
a quite general case of resistance furnace devoted to
metal refining. In particular, we show how to obtain
an equivalent lumped model by using a single 3D nu-
merical simulation and how to apply it to improve the
design of the device.

2 Numerical simulation

We consider a resistance furnace consisting of a stain-
less steel chamber enclosing an hemispherical cru-
cible containing the metal to be treated and a heater
located under the crucible. Both the crucible and the
resistor are surrounded by isolated materials (see Fig. 1).

The furnace is fed with a well balanced 3-phase sys-
tem of alternating currents which are supplied to the
resistor through three electrodes. The current magni-
tudes are supposed to be the known input data.

Fig. 1. Computational domain and notations. Isometric view
(left) and section (right)

The electromagnetic model is based on the well-
know time-harmonic eddy current model (see, for in-
stance, [1]:

curlH = J, (1)
iωB+ curlE = 0, (2)

divB = 0, (3)

where H, J and E are the complex amplitudes associ-
ated with the magnetic field, the current density and
the electric field, respectively. The system is closed by
adding the constitutive law B = µH and the Ohm’s
law, J = σE; µ and σ being the magnetic perme-
ability and the electric conductivity, respectively. The
model is completed with suitable boundary conditions

E×n = 0 on ΓR, (4)
µH ·n = 0 on Γd, (5)

and the input data∫
Γ k

R

J ·ndS =−IK K = 1,2, (6)

V3 = 0 on Γ
3

R . (7)
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This model is numerically solved by using a finite
element method. The heat released by the heater due
to Joule effect, Ph, is computed as

Ph =
∫

ΩR

|Jx|2

2σ
dV. (8)

3 Equivalent lumped model

By assuming that the resistor is a single body, per-
fectly isolated inside the chamber, and without any
more external contacts than the electrode terminals,
the circuit sketched in Fig. 2 applies.

Fig. 2. Electrical circuit of the furnace.

If we combine all the passive elements of the cir-
cuit within the same block and forget about its partic-
ular topology, it is possible to replace it by a multi-
terminal connected network with six accessible vari-
ables (Ik, Vk; k= 1,2,3). By applying Tellegen’s The-
orem on the multi terminal network (see [5]), we can
deduce a relation between the Joule dissipation Ph and
the lumped circuit parameters

Ph = Re

(
1
2

3

∑
k=1

Vk Īk

)
(9)

By applying Kirchhoff’s current law and perform-
ing some formal computations, last expression can be
rewritten as

Ph = Re
(

ZR ∣∣IR∣∣2) (10)

where ZR = VR/IR represents an equivalent reduced
impedance for the furnace; IR and VR denote, respec-
tively, the reduced current and reduced voltage drop,
which are given by

IR = I1, (11)

VR = (V1−V3)+(V2−V3)e−i(2π/3). (12)

4 Numerical results

A combination of the both distributed and lumped
models described in previous section was employed
during the designing process of an indirect resistance
furnace devoted to Solar Grade Silicon (SoG) purifi-
cation.

As post-processing result, we obtain the output
voltage on each terminal and from (8) we compute the
Joule effect on the heater. Finally, the reduced equiva-
lent impedance of the furnace ZR =VR/IR is obtained
after replacing these voltages in (12).

Once ZR has been obtained, it is easy to compute
the current input signal which is required to get a tar-
get Joule effect by just applying (10). In this particu-
lar case, the curve represented in Fig. 3 has been ob-
tained. The values attained has been compared with
in plant measurements and the results show a good
agreement of the results.

Fig. 3. Characteristic curve estimated for the projected fur-
nace
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Abstract. The modular simulator LinzFrame is a mixed-
level simulator, combining device, circuit and analog/mixed
signal simulation in one tool as depicted in Fig. 2. It is a gen-
eral tool to solve ordinary differential algebraic equations
(DAEs) and partial differential equations (PDEs) resulting
from electronic, mechanical, physical and other problems.
However, the simulator is optimized for radio frequency
(RF) simulation. In a current research project the simulator
is employed for the development of novel signal sources in
the THz range, investigating the physical origin of plasma
waves in quasi 2D electron gases.

For mixed-level simulation interfaces exist to the field
and device simulator devEM from MAGWEL N.V., Leu-
ven, [6] to Octave/Matlab for analog mixed signal simula-
tion and the device simulator from RWTH ITHE. The latter
is an R&D simulator for modeling novel semiconductor de-
vices in the THz range [4].

spatial discretization (FIT)

devEM

MNA - lumped models - netlist (C++)

LinzFrame

f (x) + ∂t q(x) + s(t) = 0

x = (v, i)T

LinzFrame

multirate
AC, DC, trans, shooting

time discretization

g(x, ∂t x, t) = 0

coupled circuit - EM - device model

Holistically coupled problem

Nonlinear solve Linear solve

damped Newton MUMPS, MA48, Krylov

devEM
device geometries (xml)

Maxwell’s equations

−ǫ ∇ · (∇V + ∂t A) = ρ

· · ·
semiconductor equations

Jp = −q µp

(
p · ∇V + k T

q · ∇ p
)

x = (V, A, φn, φp)T

n = ni exp
(

V−φn

VT

)

p = ni exp
(
φp−V

VT

)

Jn = −q µn

(
n · ∇V − k T

q · ∇ n
)

Fig. 1. Coupled circuit and device simulation.

In RF circuitry the lumped model assumption is often
not valid anymore. Moreover critical devices are to be opti-
mized w.r.t. geometry and - in the case of semiconductors -
doping profile. Therefore, LinzFrame has been coupled with
the EM field/device simulator devEM [2,6]. Critical RF de-
vices are simulated in full 3D, whereas for the remaining
circuit lumped device models are employed.

The simulator devEM is a technology CAD (TCAD)
simulator with the scalar and vector potentials V, A as un-
knowns, as depicted in Fig. 1. The TCAD simulator em-
ploys the Finite Integration Technique (FIT) for spatially
discretizing the partial differential equations resulting from
Maxwell’s equations and the device constitutive equations
such as the drift diffusion equations for semiconductors.

The simulator LinzFrame serves as the master simulator,
providing the numerical techniques for time integration, i.e.
the multistep BDF methods, shooting, Harmonic Balance or
envelope techniques. The device simulator devEM provides
the functional evaluations of the scalar and vector potentials
on the spatial grid and their partial derivatives in a sparse
matrix format, both for the algebraic and dynamic parts sep-
arately. Hence a full Newton method can be applied on both
the lumped and TCAD models, which we refer to as strong
or holistic coupling [2]. Since full Newton techniques can
be employed in contrary to relaxation methods or a weak
coupling of the two simulators, the convergence is guaran-
teed in nearly all practical applications.

After spatial discretization ene obtains a system of dif-
ferential-algebraic equations (DAEs) of the form

d
dt q
(
x(t)
)
+ i
(
x(t)
)
+ s(t)︸ ︷︷ ︸

f (x(t),t)

= 0 (1)

LinzFrame follows a strict modular concept with clear
interfaces for the topological setup of the PDEs/DAEs, model
libraries and several analysis toolboxes Fig. 2. The model
libraries for the device constitutive equations cover most
of the industry standards of semiconductor device models
and various signal sources. The analysis toolboxes comprise
AC, DC, transient, envelope [3, 7, 8] and steady state tech-
niques including Harmonic Balance and a spline-wavelet
simulation engine [1]. The simulator is therefore highly
flexible and renders simulation techniques for varous kinds
of problems. Moreover, the Automatic Differential Suite
(ADS) [5] facilates rapid prototyping of novel device mod-
els, since the ADS tool makes the calculation by hand of the
partial derivatives unnecessary. Furthermore, an interface to
MATLAB enables a rapid prototyping of novel algorithms.
Clear interfaces to both linear and nonlinear iterative and
moreover direct solvers from third parties complete the tool-
box. A graphical user interface (GUI) and netlist parsers for
SpectreRF and Spice are available.

In Radio Frequency (RF) circuits one observes on the
one hand slowly varying baseband signals and on the other
modulated or bandpass signals. The spectra of bandpass sig-
nals are centered around a carrier frequency, typically in the
GHz range. The baseband is the envelope of bandpass sig-
nals and covers a spectrum of typically a few MHz.

Communication engineers are mainly interested in dis-
tortions of the baseband signals during transmission, since
the information is coded in the envelope. The signal source
library of LinzFrame covers the most relevant digital com-
munication methods including PSK, QAM and OFDM.

System simulators for communication systems consider
only the baseband signals, referred to as Equivalent Com-
plex Baseband method. This technique is however not ap-
plicable for nonlinear circuits. Circuits are described by
the Modified Nodal Analysis (MNA) and device constitu-
tive equations, resulting often in huge systems of nonlinear
ordinary differential algebraic equations (DAEs). Standard
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AC, DC

Fig. 2. Overview on the LinzFrame toolbox.

DAE solvers employing Backward Differentiation Formu-
las (BDF) are prohibitively slow since the time-steps for
numerical integration must be much smaller than the recip-
rocal of the highest relevant frequency of the spectrum. The
Multirate PDE (MPDE) reformulates the system of ordinary
DAEs as a system of suitable partial differential equations
(PDEs) with mixed boundary/initial value conditions. The
baseband and bandpass signals have then appropriate time-
steps, circumventing the restriction of the sampling theo-
rem. The solution of the ordinary DAE is obtained along a
characteristic curve of the PDE.

The boundary/initial value problem can be solved by
standard techniques such as the well known Harmonic Bal-
ance (HB) method based on trigonometric basis functions,
multistep integration formulas (e.g. BDF methods) etc. On
the one hand, trigonometric basis functions are not com-
pact and do not permit local refinements. BDF methods ex-
hibit, on the other hand, a numerical damping, leading to
erroneous results, e.g., for oscillator circuits. In recent re-
search projects spline/wavelet methods [1] with adaptive
grids have been developed as an alternative. Due to their
compactness, B-splines lead to highly sparse systems, mak-
ing the solution run-time efficient. Moreover the Gibb’s
phenomenon is avoided. Trigonometric B-splines moreover
avoid the numerical damping.
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Summary. Electrostatic BEM (Boundary Element Method)
formulations are presented for the calculation of dielec-
tric surface charging, including saturation and restrike phe-
nomena. The simulation results turn out to be in agree-
ment with surface potential measurements in a simple rod-
barrier-plane configuration, where lightning impulses initi-
ate streamers and charge accumulation on the barrier. The
usefulness of the given BEM-formulation is additionally
supported by transient charging simulations in the frame-
work of an electric carrier drift model.

1 Introduction

Surface charges (SC) on solid insulator surfaces can
significantly influence the dielectric performance of
medium and high voltage power devices. They can
mitigate discharge inception effects during a lightning
impulse test, as well as enhance them for applied volt-
ages with reversed polarity. Unfortunately, the sim-
ulation of the intrinsically transient charging, which
may occur via a zoo of different gas discharge pro-
cesses like streamers, leaders, ion motion and combi-
nations thereof, is a complex task and thus requires
simplified approaches for application to real devices.

Recently a simplified engineering approach based
on the saturation-charge boundary-condition has been
proposed [1]. It works because saturation is a rather
robust extremal stage of SC accumulation that al-
lows assessment of possible changes in field distribu-
tion without performing the full analysis of the charg-
ing process. By neglecting the influence of the space
charge, a simple electrostatic computation based on
integral approach is possible (without meshing the gas
volume).

In this paper we present a new formulation of the
saturated SC for the 3D boundary element method
(BEM), which can be efficiently applied in an indus-
trial design environment. In addition to the saturation
stage, computational models for modification of the
accumulated charge due to restrikes (back discharges
after changes of electrode potentials) are considered.
The new formulation has been validated based on ex-
periments and transient models. We present results for
an example of a rod-barrier-plane arrangement in at-
mospheric air.

2 BEM Formulation

We assume that the saturation stage at the dielectric
boundary is achieved when the amount of accumu-
lated SC is so large that the normal component of the
electric field in the gas is zero. In order to fulfill the
Gauss law, the saturation charge density must be then
equal to the flux density on the solid insulation side.
In the traditional BEM formulation [2], both relation-
ships can be expressed for a collocation point i on a
dielectric surface as follows:

E−
ni +

σi

2ε0
= 0 (1)

E−
ni −

σi

2ε0
− σsati

ε0εr,Ins
= 0 (2)

where σi and σsati are unknown densities of the
virtual and saturation charges, εr,Ins is the relative per-
mittivity of the solid insulation, and E−

ni is based on
Green’s function integration over all surfaces of the
model:

E−
ni =

1
4πεo

∑
j

∫
S j

niK · rij

r3
i j

σ jdS (3)

An example of a σsati computation is shown in
Fig. 1. More details on saturation and ”restrike”-formulations
will be presented in the full paper.

Fig. 1. Charge density-distributions calculated for a rod-
barrier-plane configuration (dP=10 mm, dB=5 mm). The
bell-shaped curve corresponds to σsati calculated with (1)
- (3). The volcano-shaped distribution has been calculated
after removing some of charge due to restriking.
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3 Experimental Validation

The experimental test arrangement includes a HV rod
with diameter D=7 mm (or 4 mm), a dielectric barrier
600x600x5 mm with εr,Ins=3, and a grounded plate
electrode. The rod-barrier distance, dB, and rod-plate
distance, dp, vary between 0 and 100 mm. A standard
lightning voltage impulse (LI) with 1.2/50 µs and a
peak value in the range between 20 and 100 kV is ap-
plied to the rod. The positive streamer discharge initi-
ated at the spherical rod tip deposes SC at the barrier
surface. After the impulse and a possible restrike the
barrier together with the grounded plane are moved
to another location where the surface potential due
to accumulated charge is scanned by a robot-driven
measurement probe. Before applying the next impulse
the barrier is cleaned with alcohol in order to remove
the SC. Results of surface potential distributions mea-
sured for two selected configurations and calculated
with the above mentioned BEM method are compared
to each other in Fig. 2 and show reasonable agree-
ment. More experimental results are included in [3].

Fig. 2. Surface potential distribution measured and calcu-
lated for 2 rod-barrier-plane configurations: without and
with a restrike.

4 Transient Model

The real charging dynamics may consist of different
phases, starting with very fast (positive) streamer(s)
leaving behind a column of ionized air with subse-
quent ion drift towards the insulator surface. Never-
theless, we used a simple charge-density drift-diffusion

model with a field-dependent injection condition at
the high field electrode (see, e.g., [4]), and calculated
the transient SC accumulation for testing the normal-
field nullification assumption. The results (cf. Fig. 3
for an example geometry similar to the above ones)
indicate that the assumption is sufficiently confirmed
for practical purposes. Deviations are second order
effects that can be explained by simple physical ar-
guments, as will be mentioned in the full paper, like
global dynamic field distortion and suppression of in-
ception if the surface-electrode distance is too short.

Fig. 3. Initial (dashed) and SC-saturated (solid) normal
electric surface field. Insets: flow lines (white), equipoten-
tial lines (black), and SC (color) of initial (a) and saturated
(b) states.

5 Conclusion

A comparison with experiments and transient mod-
elling indicates that the numerically efficient steady-
state surface charging model based on the discussed
saturation concept can be used for a reasonable pre-
diction of electric fields during high voltage tests.
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Summary. The application of numerical models for Deep
Brain Stimulation (DBS) has improved the understanding
of the mechanisms behind the neurosurgical treatment. Cur-
rently, the evaluation of the induced electric field in the cor-
responding volume conductor models predominantly relies
on commercial software. In this study, we propose a new
open source simulation platform, which comprises CAD
and CAE tools for solving the electro-quasistatic formula-
tion of Laplace′s equation.

1 Introduction

Disruption of excessive neuronal synchronization in
β− and γ−band frequencies, observed in patients
with Parkinson′s disease and dystonia, can be achieved
by Deep Brain Stimulation (DBS). The basic princi-
ple of the therapy is to deliver electric pulses into deep
brain areas via an electrode. A rectangular shaped sig-
nal of 130 Hz with pulse duration of 60-90 µs is the
conventional stimulation protocol, though its numer-
ous modifications were suggested. The therapeutic ef-
fect arises from the regularization of the pathological
neural pattern [5], but the source of the regularization
is still debatable. The response of neural networks to
DBS requires further investigation in order to increase
efficiency of the treatment.

Accurate estimation of the electric field distribu-
tion is an essential step in DBS optimization, which
will define an optimal electrode geometry, its loca-
tion and a stimulation protocol. The open source sim-
ulation platform, proposed in this work, will simplify
the process of numerous field computations, required
by an optimization algorithm. Moreover, it will also
allow fast reproducibility of the results by other re-
search groups: the combination of open source CAD
and CAE modules, connected and controlled via a
Python interface, facilitates quick prototyping.

2 Methods

2.1 Setting up a Discretized Model

Designing and discretizing of the computational do-
main was conducted in the open source software SA-
LOME (www.salome-platform.org, vers. 8.3.0) with
the Netgen module. Apart from its GUI, SALOME

allows to export and import Python scripts, which
provides its integration to a Python-based simula-
tion platform. Using only the surface of the brain
(or its approximation) as a CAD model in the first
step avoids modeling of the interior structures with its
process complexity and the risk of instability of im-
ported assemblies. Nevertheless, the developed plat-
form supports explicit definition of subdomains (i.e.
inner structures) and it was utilized to model the en-
capsulation layer (Fig. 1) as well, which is built up
due to the inflammatory response. Further, an effi-
cient discretization of the computational domain re-
quires the definition of sub-meshes: boundary condi-
tions and the region of interest (ROI) demand a highly
refined mesh, while the field elsewhere can be com-
puted with a rather rough discretization. It is also

Fig. 1. Distribution of tissues in the rat brain, mapped onto
tetrahedral mesh (sagittal plane). Grey and white matter are
depicted with corresponding colors, cerebrospinal fluid is
shown in blue and the encapsulation layer (surrounding the
electrode) in red. The electrode is considered as a perfect
conductor and subtracted from the computational domain.

important to take heterogeneity of the brain tissues
into account as it influences the current spread [4].
Our platform supports the incorporation of voxelized
MRI data by mapping it onto the generated mesh: the
algorithm defines to which voxel the midpoint of a
mesh cell belongs and assigns the corresponding tis-
sue marker. Obviously, the accuracy of the mapping
depends on the level of discretization, introducing ad-
ditional criteria for refinement. Furthermore, the tar-
gets of DBS reside near fiber tracts, which have highly
anisotropic properties and thus considerable effect
on the electric field distribution [2]. In the simula-
tion platform, anisotropy is implemented analogously
to heterogeneity, using conductivity tensors, obtained
from voxelized Diffusion Tensor Imaging (DTI) data.
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2.2 FEniCS Model

The discretized model is then to be exported to the
free software FEniCS (www.fenicsproject.org, vers.
2017.2.0) [1], which contains programming and math-
ematical tools for solving differential equations with
the Finite Element Method (FEM). FEniCS uses C++
classes for the assembly of systems and offers a Python
interface, providing computational and prototyping
efficiency.

After the model is imported, we solve the electro-
quasistatic (EQS) problem [7]

∇·
(
(σ(r)+ jωε(r))∇φ(r)

)
= 0, (1)

with FEniCS. The approximation is valid for the elec-
tric fields of relatively low frequencies in the absence
of the magnetic induction [8]. Here, φ is the electric
potential, ε and σ are the permittivity and conductiv-
ity of the material, ω denotes the angular frequency
and j is the imaginary unit. The frequencies are de-
fined by Fourier transform of the stimulation signal,
and the dispersive nature of brain tissues is taken into
account using a 4-term Cole-Cole model with param-
eters from [3]. Accurate signal reproduction might re-
quire a multitude of calculations; therefore a multi-
processing algorithm was implemented.

3 Numerical Results

We constructed a geometric model of the Sprague
Dawley rat brain’s exterior surface basing on the Wax-
holm Space atlas [6]. Using the approach described in
Sect. 2, we created a FEM model and carried out nu-
merical investigations within the developed platform.
We employed a concentric bipolar electrode CEAX-
200 (microprobes.com) and defined Dirichlet bound-
ary conditions (b.c.): we assigned 1V to the surface of
the core contact and set the outer contact to ground.
The rest of the outer surface was considered isolated,
i.e. Neumann b.c. was applied. While heterogeneity,
dispersion and the encapsulation layer were consid-
ered, anisotropic properties were neglected in the pre-
liminary model as well as the electrical double layer.

Solution of (1) was performed by the MUltifrontal
Massively Parallel sparse direct Solver (MUMPS) with
incomplete LU factorization on redundant compu-
tational resources. The mesh optimization was con-
ducted in two steps: first, integrals of the potential at
the contact surfaces (i.e. Dirichlet b.c. with manually
defined values) were set as goal functions; afterwards,
the sub-meshes were refined, basing on the relative er-
ror in the electric potential with stricter requirements
in the ROI. The results on the optimized mesh were
compared to an analogous model, designed in COM-
SOL Multiphysics® (vers. 5.3a). Though the electric

potential is the same near the electrode, values out-
side this area reveal a scaling factor (≈ 0.96). Studies
are ongoing to find the origin of the scaling. Using the
relation E = −∇φ , the electric field distribution was
obtained (Fig. 2), clearly demonstrating the influence
of heterogeneity. In the full paper, a thorough com-
parison of the models will be conducted, basing on
the results of simulations for the conventional DBS
signal.

Fig. 2. Magnitude of the electric field at 130 Hz and 1V
bipolar stimulation, the scale is in V/mm.
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Summary. Thermal effects in monolayer graphene due to
an electron flow are investigated with a Direct Simulation
Monte Carlo (DSMC) analysis [1, 2]. The crystal heating is
described by simulating the phonon dynamics of the several
relevant branches, acoustic, optical, K and Z phonons. In
particular, it is shown that the Z phonons, although they do
not enter the scattering with electrons, play a non-negligible
role in the determination of the crystal temperature. More-
over, a significant influence of the lattice temperature on the
characteristic curves is observed only for long times [3, 4].

1 The mathematical model

In a semiclassical kinetic setting, the charge transport
in graphene is described by four Boltzmann equa-
tions, one for electrons in the valence band (π) and
one for electrons in the conduction band (π∗), that in
turn can belong to the K or K′ valley,

∂ fℓ,s(t,x,k)
∂ t

+vℓ,s ·∇x fℓ,s(t,x,k)+

− e
h̄

E ·∇k fℓ,s(t,x,k) =
d fℓ,s
dt

(t,x,k)
∣∣∣∣
e−ph

(1)

where fℓ,s(t,x,k) represents the distribution function
of charge carriers, in the band π or π∗ (s = −1 or
s = 1) and valley ℓ (K or K′), at position x, time t,
and with wave-vector k. We denote by ∇x and ∇k the
gradients with respect to the position and the wave-
vector, respectively. The group velocity vℓ,s is related
to the band energy εℓ,s by

vℓ,s =
1
h̄

∇k εℓ,s .

With a very good approximation, a linear dispersion
relation holds for the band energies εℓ,s around the
equivalent Dirac points, so that

εℓ,s = s h̄vF |k−kℓ| , (2)

where vF is the (constant) Fermi velocity, h̄ the Planck
constant divided by 2π , and kℓ is the position of the
Dirac point ℓ. The elementary (positive) charge is de-
noted by e, and E is the electric field, here considered
as an external field. The right hand side of (1) is the
collision term representing the interactions of elec-
trons with acoustic, optical and K phonons. Acoustic
phonon scattering is intra-valley and intra-band and

can be longitudinal (LA) or transversal (TA). Optical
phonon scattering is intra-valley and can be longitu-
dinal (LO) and transversal (TO); it can be intra-band,
leaving the electrons in the same band, or inter-band,
pushing the electrons from the initial band toward an-
other one. Scattering with phonons of K-type pushes
electrons from a valley to a nearby one (inter-valley
scattering). The general form of the collision term can
be written as

d fℓ,s
dt

(t,x,k)
∣∣∣∣
e−ph

=

= ∑
ℓ′,s′

[∫
B

Sℓ′,s′,ℓ,s(k′,k) fℓ′,s′(t,x,k′)
(
1− fℓ,s(t,x,k)

)
dk′

−
∫

B
Sℓ,s,ℓ′,s′(k,k′) fℓ,s(t,x,k)

(
1− fℓ′,s′(t,x,k′)

)
dk′

]
,

where the total transition rate Sℓ′,s′,ℓ,s(k′,k) is given
by the sum of the contributions of the several types
of scatterings. The evolutions of the phonon branches
are governed by the following Boltzmann equations

∂gµ(t,q)
∂ t

=Cp−e
µ (q)−

gµ −gLE
µ

τµ
, (3)

where µ =LA,TA,ZA,LO,TO,ZO,K, gµ is the phonon
distribution function, Cp−e

µ describes the phonon-electron
collisions and is equal to zero for ZO and ZA, τµ =
τµ(Tµ) are the temperature dependent phonon relax-
ation times, gLE

µ ’s are the local equilibrium phonon
distributions given by

gLE
µ =

[
eh̄ωµ/kBTLE −1

]−1
. (4)

The main aims of the paper is to calculate the ac-
tual phonon distributions and the graphene heating, by
means of the deterimnation of the local equilibrium
temperature TLE The phonons distribution is a Bose-
Einstein one for t = 0 and it is updated at each time
step using the scatterings dynamics. For this purpose,
we need to know the production terms Cp−e

µ (q), that
represent the rate of variation of the phonon popula-
tions per unit time and are proportional to the differ-
ence between the number of emission and absorption
processes, n+(q) and n−(q) respectively, due to the
electron-phonon scatterings. These are evaluated us-
ing the intermediate results of the DSMC part, count-
ing them in each time window [tn−1, tn] and in each
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elementary cell of the grid in the q-space, being q the
phonon wave-vector. The only relevant contributions
come from the LO, TO and K phonons.

At each scattering event, we consider whether it
is an absorption or an emission process, calculate the
wave-vector q, taking into account the momentum
conservation q± = ±(k′−k), and determine the cell
to be updated. The values of the phonons distributions
in the cell the wave-vector belong to are updated by
augmenting or decreasing the number of phonons per
unit cell by using the values n+and n− obtained from
the MC simulation.

The crucial point is to define the suitable statis-
tical weight, βscatt , for each phonon population, in
order to estimate the correct values of the produc-

tion terms as Cp−e
η (q) =

1
∆ t

βscatt (n+(q)−n−(q)),
η = LO,TO,K and it will be shown that

βscatt =
(2π)2

|Cα |
ρ

NP
, (5)

where ρ is electron density, NP the number of the
simulated particles and |Cα | the measure of the ele-
mentary cell of the grid. By introducing the average
phonon energy densities as

Wµ =
1

(2π)2

∫
B

h̄ωµ gµ dq, (6)

from the general properties of the phonon collision
operators, the relation

∑
µ

Wµ −W LE
µ

τµ
= 0 (7)

holds, where W LE
µ are calculated by means of (4).

TLE is obtained by numerically solving the non lin-
ear relation arising from (7). The temperatures of each
phonon branch are introduced according to∫

B
h̄ωµ gµ(q)dq =

∫
B

h̄ωµ

[
eh̄ωµ/kBTη −1

]−1
dq.

(8)

2 Numerical results

The physical situation we simulate is that of a strip
of graphene which is infinitely long in the transver-
sal direction with respect to that of the electric field.
This allows us to look for solutions which are not de-
pending on space and to avoid any effect related to the
boundary conditions. NP = 104 particles have been
used. The time step has been set equal to ∆ t = 2.5 fs.
Several Fermi energies have been considered in order
to investigate the dependence of the rise in tempera-
ture also on the electron density and not only on the
applied field.

In Fig. 1 the LO and TO phonon distributions are
shown, in Fig. 2 the phonon temperatures for each
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Fig. 1. LO (a) and TO (b) distribution after 10 ps in the case
εF = 0.6 eV and E = 20 kV/cm.

Fig. 2. Phonon branches temperatures versus time in the
case εF = 0.6 eV when E = 20 kV/cm.

Fig. 3. Comparison of local equilibrium temperature versus
time with and without the inclusion of Z phonons for εF =
0.6 at different values of the electric field.

branch and in Fig. 3 the local equlibrium temperature
versus time, where the Z phonons influence is high-
lighted as well.
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Summary. Multiscale modeling is nowadays a general trend
in computational physics and industrial mathematics, as it
allows the numerical simulation of complex processes and
phenomena that would be otherwise impossible to study
solely by means of first principles approaches. Within this
framework, a simplified problem is initially investigated
through accurate calculations and appropriate parameters
are extracted. Thereon, these parameters are used to cali-
brate theoretical models that are computationally less de-
manding whilst able to span in space- and time-scales that
are comparable to those of real processes and experiments.
In this paper we will discuss examples from our studies for
such coupled numerical techniques, considering the case of
graphene, other low-dimensional materials and hybrid per-
ovskites.

1 Introduction

Multiscale modeling allows the computationally ef-
ficient numerical simulation of complex processes
and phenomena. Within materials science, multiscale
modeling often regards the simulation of mass and
electron transport in nanoscale and mesosclale sys-
tems. The basic idea is to approach a simplified prob-
lem through accurate calculations, extracting appro-
priate parameters that can be successively used to cal-
ibrate theoretical models that are computationally less
demanding. Often, the atomistic mechanisms and re-
lated parameters are investigated and calculated accu-
rately in the quantum framework of the Density Func-
tional Theory (DFT) and/or within DFT-based Molec-
ular Dynamics (MD). Such ab initio approaches guar-
antee the theoretical evaluation of the atomic proper-
ties of materials specifying their constituents (atoms
and electrons), without any relevant approximations.
The integrated development of simulation codes sup-
ported by ab initio quantum calculations can signif-
icantly improve the quality of the transport models
and the portability of their parameter calibration. The
basis of the predictability potential for the mathe-
matical model derives from the proper matching of
the DFT/MD calculated “information” (e.g. material
parameters, atomic configuration, migration/diffusion
paths, energetics, electronic structure, etc.) in the sim-
ulation schemes. These calibrated simplified approaches
can then efficiently simulate large systems for long
times, i.e. at the scale of interest for the experimen-
tal studies. In this paper we will discuss examples
from our studies for such coupled numerical tech-

niques considering the case of low-dimensional ma-
terials [1,2], while expanding similar concepts for the
case of hybrid perovskites [3].

2 Methodology

Quantum transport is calculated for two-terminal de-
vices, i.e. devices that comprise of a channel of finite
dimensions in contact with two semi-infinite leads.Here
we consider ideal contacts, i.e. contacts made of the
same material as the channel. Calculations are based
on the nonequilibrium Green’s function formalism
[4]. The single-particle retarded Green’s function ma-
trix is

G r(ε) = [εS−H−ΣL−ΣR]
−1, (1)

where ε is the energy, H the real-space Hamiltonian
and S the overlap matrix, which in the case of an or-
thonormal basis set is identical with the unitary matrix
I. ΣL,R are self-energies that account for the effect of
ideal semi-infinite contacts, which can be calculated
as:

ΣL(R) = τ
†
L(R)gL(R)τL(R) (2)

Here τL,R are interaction Hamiltonians that describe
the coupling between the contacts and the device and
gL,R the surface Green functions of the contacts. The
transmission probability of an incident Bloch state
with energy ε can be computed as the trace of the fol-
lowing matrix product:

T (ε) = Tr{ΓLG r
ΓR[G

r]†}, (3)

where
ΓL(R) = i{ΣL(R)− [ΣL(R)]

†} (4)

are the spectral functions of the two contacts. The re-
flection coefficient of a single quantum channel can
be defined as R = 1−T . According to the Landauer-
Buttiker theory [4], conductance can be calculated as:

G =
2e2

h
T, (5)

where G0 = 2e2/h≈ 77.5µS is the conductance quan-
tum.
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3 Results

The electronic structure of graphene can be easily
calculated within a next-neighbor tight-binding (TB)
model. Such a description accounts only for the linear
combination of π atomic orbitals of graphene, which
is however sufficient for the low-energy spectrum of
the material. Hence, the next-neighbor TB Hamilto-
nian can be written as

H =−t ∑
<i, j>,σ

c†
i,σ c j,σ +H.c., (6)

where ci(c
†
i ) is the annihilation (creation) operator for

an electron with spin σ at site i, and t is the hop-
ping integral with a typical value t = 2.7eV . In order
to show the possibilities of multiscale modeling, here
we will discuss the transport properties of defected
graphene, considering the presence of a single type of
defect, i.e. carbon vacancies. The simplest and most
common method to include a vacancy in a site i of
the graphene lattice is to remove its π electron from
the model by switching to infinite the related on-site
energy term εi in the Hamiltonian, or equivalently, by
switching to zero the hopping ti j terms between the
defected and the neighboring sites (see Fig. 1). How-
ever, comparison with DFT calculations shows that
such approach is quantitatively inaccurate, due to the
missing structural reconstruction around the vacancy
site in the TB formalism. A more accurate treatment
of the defect states within the electronic spectrum has
to take into account such local structural reorganiza-
tion. A method to incorporate such information within
the TB model is to perform calculations with methods
of higher accuracy (e.g. the DFT) and calibrate the
TB Hamiltonian in order to reproduce the ab initio
results. Here, based on density functional theory cal-
culations of defected graphene nanoribbons, the tuned
values of the on-site energy of the defect site and the
hopping integrals between this and neighboring sites
have been set to εi=10 eV and ti j=1.7 eV, respectively
(Fig. 1). Such calibration can then allow for the calcu-
lation of electron transport in large-scale devices with
the presence of a finite concentration of vacancy de-
fects (Fig. 2). This example is a typical paradigm of
the multiscale approach often used for conductance
calculations in doped and defected graphene systems.
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Fig. 1. Transmission coefficient as a function of energy for
a graphene nanoribbon with 20 dimer lines having a single
vacancy defect, calculated by means of (a) a DFT Hamil-
tonian, (b) a TB Hamiltonian with ti j=0 eV and (c) a TB
Hamiltonain with εi=10 eV and ti j=1.7 eV.
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Fig. 2. Conductance distribution for a graphene nanoribbon
with width W=9.88 nm, length L=20 nm and a fixed vacancy
concentration of 0.5%. The solid line represents the mean
conductance obtained from 100 different configurations of
the system (shown as points).

References

1. I. Deretzis and A. La Magna. Interaction between hydro-
gen flux and carbon monolayer on SiC (0001): graphene
formation kinetics. Nanoscale, 5(2), 671–680, 2013.

2. I. Deretzis, V. Romano and A. La Magna. Electron
Quantum Transport in Disordered Graphene. Scientific
Computing in Electrical Engineering. Mathematics in
Industry, vol 23. Springer, Cham, 2016. pp. 3–12

3. I. Deretzis and A. La Magna. Exploring
the orthorhombic-tetragonal phase transition in
CH3NH3PbI3: the role of atom kinetics. Nanoscale,
9(18), 5896–5903, 2017.

4. Datta, S.: Electronic Transport in Mesoscopic Systems.
Cambridge University Press (1997)

46



A mass-lumped mixed finite element method for Maxwell’s equations
Herbert Egger1 and Bogdan Radu2

1 AG Numerik, Mathematik, TU Darmstadt egger@mathematik.tu-darmstadt.de
2 Graduate School for Computational Engineering, TU Darmstadt radu@gsc.tu-darmstadt.de

Summary. We consider the simulation of electromagnetic
wave propagation problems by mixed finite elements with
mass lumping. While the approximation order is formally
reduced through the mass-lumping, we can establish super-
convergence in one of the variables which allows to regain
the full approximation order by post-processing. The over-
all method has a similar complexity to traditional finite-
difference methods but can be applied also to problems with
inhomogeneous parameters, curved geometries, and on un-
structed grids. This is illustrated by numerical tests.

1 Introduction

The propagation of electromagnetic waves through a
linear medium is described by Maxwell’s equations

ε∂tE−∇×H = σe, (1)
µ∂tH+∇×E = 0. (2)

Here E and H describe the electric and magnetic field
densities and ε , µ denote, respectively, the permittiv-
ity and permeability of the medium. For the discre-
itzation of (1)–(2) we consider a mixed finite element
method which is based the variational principle

(ε∂tEh(t),vh)h− (Hh(t),∇×vh) = 0, (3)
(µ∂tHh(t),qh)+(∇×Eh(t),qh) = 0, (4)

for all vh ∈ Vh, qh ∈ Qh, and t > 0, and on the ap-
proximation of the electric and magnetic fields in
the spaces Vh = P1(Th)

3∩H(curl) and Qh = P0(Th)
3

over some shape-regular simplicial mesh Th. The first
space consists of Nedelec finite elements of the sec-
ond type. In the above formulation, (·, ·) denotes the
L2 scalar product and (·, ·)h in (3) denotes an approx-
imation obtained by numerical integration. Together
with an appropriate choice of basis functions for Vh,
yields a mass-lumping strategy, i.e., the linear system

M∂tu(t)−B>p(t) = 0 (5)
D∂t p(t)+Bu(t) = 0 (6)

corresponding to (3)-(4) is governed by a diagonal
matrix D and a block diagonal matrix M. This al-
lows an efficient integration in by explicit single- and
multi-step methods, e.g., the leapfrog scheme.

1.1 Previous work

Similar ideas were utilized by Elmkies and Joly in [4]
for two-dimensional Maxwell’s equations, by Cohen
and Monk [2] on sructured grids, and by several au-
thors for different applications; see [1] for further ref-
erences. Our approach here is inspired by the work of
Wheeler and Yotov [8] and our preliminary work [3]
dealing with acoustic wave propagation.

2 Theoretical results

For approriate initial values Eh(0), Hh(0), one can
show by standard arguments [6, 7] that (3)–(4) yields
first order approximations

‖E(t)−Eh(t)‖ ≤Ch, (7)
‖H(t)−Hh(t)‖ ≤Ch, (8)

for the two field components, whenever the true solu-
tion (E,H) is sufficiently smooth. This is optimal with
respect to the approximation of H by piecewise con-
stant functions, but sub-optimal with respect to the ap-
proximation of E by piecewise linear finite elements.
In numerical tests, one can however observe super-
convergence in the magnetic field, i.e.,

‖π0
h H(t)−Hh(t)‖ ≤Ch2, (9)

where π0
h denotes the L2-orthogonal projection onto

piecewise constant functions in Qh. Based on the im-
proved estimate (9), we are able to construct in a post-
processing step piecewise linear improved approxi-
mations (Ẽh,H̃h) which satisfy

‖E(t)− Ẽh(t)‖+‖H(t)− H̃h(t)‖ ≤Ch2. (10)

The overall method consisting of a mixed finite ele-
ment approximation with mass-lumping and the post-
processing strategy thus yields a second order approx-
imation which can be computed efficiently by explicit
time stepping schemes.

Remark. Using similar arguments as in [3,5], we can
establish second order convergence for fully discrete
approximations obtained by time-integration with the
leap-frog scheme.
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3 Numerical illustration

We now illustrate our theoretical results by a simple
test problem which was also used in [6, 7].

Plane wave propagation. We consider a plane wave
(E = (Ex,Ey,0) and H = (0,0,Hz) with all fields de-
pending only on the x and y coordinate. For our con-
vergence study, we use a sequence {Th} of quasi-
uniform but non-nested meshes Th with decreasing
mesh size h = 2−k. In Table 1 and 2 we depict the
errors obtained in our computational tests with the
mixed-finite element method with mass-lumping and
before and after post-processing. As error measure,
we use ‖u‖= max0≤t≤T ‖u(t)‖L2), where u stands for
E and H, respectively. The values of E(t) and H(t)
are obtained by numerical integration of (3)–(4) by
the leapfrog scheme with stepsize τ ≤ ch.

h ‖E−Eh‖ eoc ‖H−Hh‖ eoc

2−3 0.053047 — 0.069893 —
2−4 0.020622 1.36 0.033095 1.08
2−5 0.009977 1.05 0.016408 1.01
2−6 0.004883 1.03 0.008114 1.02

Table 1. Errors and estimated order of convergence (eoc)
for plane wave solution on a rectangular domain.

h ‖E− Ẽh‖ eoc ‖H− H̃h‖ eoc

2−3 0.051792 — 0.055946 —
2−4 0.013486 1.94 0.013180 2.09
2−5 0.003375 2.00 0.003220 2.03
2−6 0.000836 2.01 0.000791 2.02

Table 2. Errors and estimated order of convergence (eoc)
foir plane wave solution after post-processing.

As predicted in (7)–(8), we observe only first or-
der convergence in both solution components by the
mixed finite element method with mass-lumping. As
can clearly be seen in Table 2, the full second order
convergence for both solution components is obtained
after post-processing.

Further visualization. To highlight the qualitative
improvement obtained by the post-processing, we dis-
play in Figure 3 snapshots of the discrete solution
components before and after post-processing. As can
be seen from the illustrations, the post-processing not
only reduces the error quantitatively, but it also leads
to almost continuous approximations.

Acknowledgement. The authors are grateful for financial
support by the “Excellence Initiative” of the German Fed-
eral and State Governments via the Graduate School of

Fig. 1. Snapshots of the discrete approximations Exh,
Eyh, and Hzh for the plane wave solution at time t = 2
(lect column) and corresponding approximations after post-
processing (right column).
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Summary. We will present an error estimator for the com-
putation of the z-component of the vector potential of the
magnetic field in the framework of rotating electrical ma-
chines. For the construction of the estimator we have to take
care of the approximation errors of the curved domain by a
polygonal mesh. Numerical results for the error reduction
of the adaptive strategy in comparison with an uniform refi-
nement will be presented.

1 Electrical Machines

This work focuses on the error analysis of a finite ele-
ment scheme with linear elements in the framework of
rotating electrical machines. We consider permanent-
magnet synchronous machines (PMSM) that consist
of two parts: an exterior part that is fixed – the sta-
tor; and in its interior a rotating part – the rotor. Each

Fig. 1. Example: PMSM

of these parts is be further subdivided into different
domains with distinct physical properties. In figure
1 a quarter of the cross-section of such a PMSM is
shown. Magnets are depicted in yellow and their mag-
netization directions are indicated by the arrows. The
machine has 12 slots with 4 pole-pairs. The scheme
of the connection is shown by the different colors of
the slots. Gray area symbolizes iron material, its non-
linear property described by the magnetic reluctivity
ν (|∇u|).

2 Model Problem

We use the magnetostatic case of Maxwell’s equati-
ons as a model problem and restrict the simulation
to the 2d case because most of the flux is in the x-y
plane.
When simulating an electrical machine we are not
only interested in one rotor-to-stator position but in a
whole rotation cycle. After meshing both motor parts
once we rotate the rotor mesh for the simulation of the
different rotor positions. To handle the rotation effi-
ciently we use Nitsche coupling (NC) [2,3] as a dom-
ain decomposition method. The idea of this method is
to insert an artificial interface Γ between the two se-
parate parts. We introduce a new function λ on this in-
terface that represents the solution on Γ and penalize
the jump of the solution across this interface. With the
notation ui := u

∣∣
Ωi

the resulting variational formula-

tion reads: Find u= (u,λ ), u : Ω→R, λ : Γ →R such
that

a(u,v) = 〈 f ,v〉 (1)

with

a(u,v) = ∑
i

(∫
Ωi

(ν (|∇ui|)∇ui−M⊥) ·∇vidx

−
∫

Γ∩Ωi

(ν0∇ui ·ni)(vi−ψ)dS

+β

∫
Γ∩Ωi

(ν0∇vi ·ni)(ui−λ )dS

+
α

|Γ |

∫
Γ∩Ωi

ν0 (ui−λ )(vi−ψ)dS
)

and

〈 f ,v〉= ∑
i

∫
Ωi

J3 vidx

∀v= (v,ψ), v : Ω → R,v
∣∣
∂Ω

= 0 and ∀ψ : Γ → R.
The functions ψ are the test-functions on the interface
Γ .
J3 is the current coming from the coils, M⊥ is the mag-
netization in the permanent magnets.
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3 Adaptive Mesh Refinement

For the optimization of an electrical motor many ge-
ometries have to be simulated to find a suitable to-
pology. Thus the speed of the used solver is crucial.
To accelerate the simulation time while retaining the
accuracy of the simulation result we want to use adap-
tive meshes.
For the construction of an a posteriori error estimator
in the framework of rotating electrical machines we
have to take special care on the influence of the po-
lygonal approximation of the curvilinear boundaries
and interfaces.

3.1 Boundary approximation

For the case of pure Dirichlet conditions on a curvi-
linear boundary approximated by a polygonal mesh
an error estimator was presented in the work by W.
Dörfler and M. Rumpf [1]. In our problem we also
have to deal with Neumann boundary conditions and
interface conditions. This can not be treated by the
same strategy. Instead we use ideas of hierachical ba-
sis error estimation. This gives us an estimate of the
error contribution of the polygonal approximation.

3.2 Influence of Nitsche coupling

The error estimation will be done with respect to the
NC-norm for our problem:

‖u‖2
NC = ∑

i

∫
Ωi

|∇ui|2 +∑
i

α

|Γi j|

∫
Γ

|ui−λ |2

This norm is similar to the DG-norm used in the fra-
mework of discontinuous Galerkin methods. For the
construction of the estimator we use a similar appro-
ach as it was used for a discontinuous Galerkin met-
hod in [4].

3.3 Numerical Results

Starting from an initial mesh with 562 degrees of free-
dom we compared the reduction of the error in the
NC-norm using uniform refinement with our adaptive
strategy for one rotation step and observed a reduction
of the degrees of freedom by nearly 1

3 after 4 adap-
tive refinement steps at a comparable size of the error
(Fig. 2). Additionally we can observe the influence of
the error terms estimating the effect of the boundary
approximation.

Initial Mesh (562 dof) 4 times refined Mesh (7692 dof)

1,000 10,000

0.01

0.0316

uniform
adaptive

dof

N
C

-N
or

m
-E

rr
or

Fig. 2. Reduction in the NC-norm (ϕ = 0,α = 100)

4 Future Goal

Using this ideas we get an refinement strategy for
each rotor position. As already mentioned we are in-
terested in the simulation of many different rotor-to-
stator positions. This would result in a differently re-
fined mesh for each position. However it is favourable
to develop a refinement strategy for the original stator
and rotor mesh independently of the rotation angle ϕ .

Acknowledgement. This work has been supported by the
COMET-K2 Center for Symbiotic Mechatronics of the Linz
Center of Mechatronics (LCM) funded by the Austrian fe-
deral government and the federal state of Upper Austria.

References

1. W. Dörfler and M. Rumpf. An adaptive strategy for el-
liptic problems including a posteriori controlled boun-
dary approximation. Mathematics of Computation,
67(224):1361–1382, 1998.

2. H. Egger. A class of hybrid mortar finite element met-
hods for interface problems with non-matching meshes.
preprint AICES-2009-2, Jan, 2009.

3. K. Hollaus, D. Feldengut, J. Schöberl, M. Wabro, and
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Summary. Future e-mobility calls for efficient electrical
machines. For different areas of operations, these machines
have to satisfy certain desired properties that often depend
on their design. Here we investigate the use of Isogeometric
Analysis (IgA) for the simulation and shape optimization
problems subject to the partial differential equation (PDE)
describing the electromagnetic behavior of the machine.

1 Simulation and Optimization

We investigate the simulation and shape optimization
of an interior permanent magnet (IPM) electric motor
by means of IgA. The IgA approach seems to be very
attractive for such practical problem. The most bene-
ficial aspect of IgA in the context of optimization is
the fact that the same basis functions which are used
to represent the geometry of the IPM electric motor
are also exploited to solve the underlying PDEs. In
the optimization procedure, we want to optimize the
shape of the motor in order to maximize runout per-
formance. An example of an IPM electric motor is
given in Fig. 1 (left). One possible way to optimize
the runout performance of an IPM electric motor is
to minimize the squared L2-distance between the ra-
dial component of the magnetic flux in the air gap and
some desired reference function Bd. The resulting op-
timization problem is subject to the 2d magnetostatic
PDE as constraint.

Mathematically, the arising optimization problem
can be expressed as the minimization of the objective

J(u) :=
∫

Γ

|B(u) ·nΓ−Bd|2ds =
∫

Γ

|∇u · τΓ−Bd|2ds

over D subject to: find u ∈ H1
0 (Ω) such that∫

Ω

νD(x)∇u ·∇η dx =
∫

Ω

(J3η +νMM⊥ ·∇η) dx

(1)
for all η ∈ H1

0 (Ω). The function J denotes the objec-
tive, while Γ is nothing but the midline of the airgap.
Furthermore, Ω denotes the whole computational do-
main, and D is the domain of interest also called de-
sign domain. The variational problem (1) is the 2d lin-
ear magnetostatic problem and is well-posed. The in-
volved physical quantities are the magnetic flux den-
sity B, the magnetic reluctivity ν which is nothing

but the reciprocal of the magnetic permeability µ , the
magnetization M as well as the third component of the
impressed current density J3. For simplicity, we as-
sumed J3 = 0 in our work. The involved expressions
nΓ and τΓ are the unit normal and the unit tangential
vectors along the air gap, respectively.

Fig. 1. IPM motor and a quarter of its cross section.

Figure 1 (right) shows a simplified quarter of a
cross section of an IPM electric motor that is provided
by CAD software. Hence, this geometry representa-
tion is suitable for IgA simulation. The red brown ar-
eas denote ferromagnetic material, the blue areas con-
sist of air, the yellow areas are the permanent mag-
nets, whereas the light blue area represents the air gap.

2 Numerical Computations

For the optimization problem introduced in Sect. 1,
we consider gradient based shape optimization algo-
rithms. For this purpose, we need the gradient with
respect to the shape of the considered optimization
problem.

2.1 Computation of the Shape Gradient

To compute the shape gradient, we solve the auxiliary
problem: find ∇J ∈ H1

0 (Ω ,R2) such that

b(∇J,ψ) =−dJ(D)(ψ) ∀ψ ∈ H1
0 (Ω ,R2). (2)

The expression on the right hand side of (2) is the
shape derivative which is given by the relation
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dJ(D)(φ) =
∫

Ω

S (D,u, p) : ∂φ dx, with

S (D,u, p) = (νD(x)∇u ·∇p−νM∇p ·M⊥)I
+νM∇p⊗M⊥−νD(x)∇p⊗∇u
−νD(x)∇u⊗∇p,

where I denotes the identity, the state u solves the
constraint (1), and p solves the adjoint problem∫

Ω

νD∇p ·∇η dx=−2
∫

Γ

(B(u)·nΓ−Bd)(B(η)·nΓ) ds

for all η ∈ H1
0 (Ω), The expression b(·, ·) on the left

hand side of (2) is some H1
0 (Ω ,R2) - elliptic and

bounded bilinear form that must be chosen appropri-
ately; see [1, 2, 4] for more details.

2.2 First Numerical Results

For the numerical simulation, we used a continuous
Galerkin approach which requires a suitable multi-
patch representation of the domain from Fig. 1 such
as presented in Fig. 2 (left). A first straightforward ap-
proach, which is entirely implemented in G+Smo, re-
sulted in the optimal design presented in Fig. 2 (right).
The objective drops approximately by a factor of two
from 1.05863 ·10−4 down to 5.92351 ·10−5.

Fig. 2. Initial and final design of an IPM motor.

3 Numerical Improvements

Once the complexity of the problem grows, e.g., by
refinements, solving the optimization problem in a
standard straightforward way becomes computation-
ally more and more demanding. Fortunately, G+Smo
provides more sophisticated solution methods for PDEs,
e.g., Dual-Primal Isogeometric Tearing and Intercon-
necting (IETI-DP) that is a generalization of FETI-DP
to IgA [3]. Numerical tests show that we get a pretty
good speedup compared to a sparse direct solution
technique. Table 1 shows the speedup for solving (1)
if we compare the sparse direct solver SuperLU with
IETI-DP. Moreover, IETI-DP is well suited for paral-
lelization. Strong scaling tests confirm the efficiency
of the IETI-DP algorithm for larger problems as can
be seen from Table 2. These computations were per-
formed using splines of the degree 3 on the complete
cross-section of the motor as is shown in Fig. 3.

Table 1. SuperLU vs. IETI-DP.

# dofs SuperLU IETI-DP speedup

72 572 36.0 sec 17.0 sec 2.12

250 844 193.0 sec 69.8 sec 2.77

928 796 1943.0 sec 463.0 sec 4.20

3 570 332 – 1179.0 sec –

Table 2. Strong scaling with IETI-DP and 3 570 332 dofs.

# cores 1 2 4 8 16 32 64 128

time [sec] 1179 577 325 164 89 43 22 14

rate – 2.04 1.78 1.98 1.84 2.07 1.95 1.57

Fig. 3. Full cross section of the motor consisting of 372
patches was used as computational domain Ω for the tests
with IETI-DP.

Acknowledgement. This work was supported by the Aus-
trian Science Fund (FWF) via the grants NFN S117-03 and
the DK W1214-04. We also acknowledge the permission
to use the Photo in Fig. 1 (left) taken by the Linz Center of
Mechatronics (LCM). The motor was produced by Hanning
Elektro-Werke GmbH & Co KG.

References

1. P. Gangl. Sensitivity-Based Topology and Shape Opti-
mization with Application to Electrical Machines. PhD
thesis, Johannes Kepler University Linz, 2016.

2. P. Gangl, U. Langer, A. Laurain, H. Meftahi, and
K. Sturm. Shape optimization of an electric motor sub-
ject to nonlinear magnetostatics. SIAM Journal on Sci-
entific Computing, 37(6):B1002–B1025, 2015.

3. C. Hofer and U. Langer. Dual-primal isogeometric
tearing and interconnecting solvers for multipatch dG-
IgA equations. Comput. Methods Appl. Mech. Engrg.,
316:2–21, 2017.

4. R. Schneckenleitner. Isogeometrical Analysis based
Shape Optimization. Master thesis, Johannes Kepler
University Linz, 2017.

52



Quasi-Schur Transformation for the Stable Compact Modeling of
Piezoelectric Energy Harvester Devices

Siyang Hu1,2, Chengdong Yuan1,2, and Tamara Bechtold1,2

1 Jade University of Applied Sciences, Department of Engineering, Friedrich-Paffrath-Str. 101, Wilhelmshaven 26389,
Germany.
siyang.hu@jade-hs.de, chengdong.yuan@jade-hs.de, tamara.bechtold@jade-hs.de.

2 University of Rostock, Institute for Electronic Appliances and Circuits, Albert-Einstein-Str. 2, Rostock 18059, Germany.

Summary. ‘Schur after MOR’ method has proved success-
ful in obtaining stable reduced piezoelectric device models
and is already used in industry. Yet, it is still mathematically
unproven. This contribution delivers ‘the missing piece of
the jigsaw’: We show that the involved quasi-Schur transfor-
mation indeed does re-stabilize the aforementioned models
efficiently.

1 Introduction

Model and simulation-driven development has be-
come state of the art lately due to the increasing
capacity of today’s computers. However, even the
power of modern computers fails to cope with al-
ways faster growing demands of the industry. To over-
come this issue, the methodology of model order re-
duction (MOR) has been introduced. MOR signifi-
cantly reduces the computational effort required for
e.g. system-level simulations by replacing the origi-
nal high-dimensional model with a lower dimensional
but still accurate surrogate. Novel MOR methods are
mostly interpolation-based and perform well when
applied to single-physical-domain models. However,
for models involving coupled physical domains, we
regularly encounter difficulties in preserving the sta-
ble input/output behavior of the original system.

In [2], the authors introduce different approaches
to solve the stability issue for the piezoelectric mod-
els. However, except for ‘MOR after Schur’ in [3],
none of those methods have been mathematically pro-
ven yet. In this contribution, we considered the ‘Schur
after MOR’ approach, as it proved effective in a num-
ber of industrial applications. Furthermore, this ap-
proach turns to be significantly more efficient than
‘MOR after Schur’, and its improved successor ‘MOR
after Implicit Schur’, introduced in [3], since the Schur
transformation does not have to be performed on the
full scale system matrices.

2 Piezoelectric Energy Harvesters

Piezoelectric energy harvesters transform environ-
mental mechanical vibration into electrical energy us-
ing the piezoelectric effect. Mechanical part of finite

element model reads:

M11ẍ1 +D11ẋ1 +K11x1 = b1u, (1)

where M11,K11 ∈ Rn×n are symmetric positive def-
inite (s.p.d.) and respectively the mass and stiffness
matrices. D11 = αM11+βK11,α,β ∈R is the damp-
ing matrix and x1 is the vector of nodal displacements.
The electrical part reads:

K22x2 = b2u, (2)

with K22 ∈ Rk×k the electrical conductivity matrix,
which is symmetric negative definite (s.n.d.) and

||λmax(K22)|| � ||λmin(K11)|| (3)

holds for the respective eigenvalues. x2 is a vector of
nodal electrical potentials. Both physical domains are
coupled via piezoelectric patches, which transform
stress into electric potential. Thus, we have piezoelec-
tric coupling in K12 ∈ Rn×k, such that:

Σ =


[

M11 0
0 0

]
︸ ︷︷ ︸

M

[
ẍ1

ẍ2

]
+

[
D11 0

0 0

]
︸ ︷︷ ︸

D

[
ẋ1

ẋ2

]
+

[
K11 K12

KT
12 K22

]
︸ ︷︷ ︸

K

[
x1

x2

]
=

[
b1

b2

]
︸ ︷︷ ︸

b

u

y = cT

[
x1

x2

] .

(4)

The input u corresponds to the displacement imposed
to the harvester structure with input vector b ∈ Rn+k

chosen accordingly. The total electrical potential is
gathered via output vector c ∈ Rn+k in the output y.

3 Schur after MOR

This section briefly reassembles the method intro-
duced in [2]. For a survey on general MOR methods
for this class of models, please refer to [1].

’Schur after MOR’ method stabilizes unstable re-
duced order models:

Σr =

{
Mrẍr +Drẋr +Krxr = bru
y = cT

r xr
, (5)

53



2

obtained by projective MOR: VTΣV, where:

{Mr,Dr,Kr}= VT{M,D,K}V,

br = VTb and cT
r = cTV.

(6)

V ∈ Rn+k×p, p� n+ k, is chosen as a orthonormal
basis of the p-dimensional second-order input Krylov
subspace:

Kp(−K−1M,−K−1D,−K−1b). (7)

The stabilization is achieved by performing a quasi-
Schur Transformation on Σr, where Σr is approxi-
mated by differential algebraic equations (DAEs) sys-
tem before being Schur transformed. The approxima-
tion involves an eigen-transformation Σ̃r = TTΣrT,
where T is a sorted orthonormal eigenbasis of the ma-
trix M, such that its entries m̃r,ii ≥ m̃r, j j for all i > j.
In the next step, we neglect the subspaces in which
the differential equations are quasi-algebraic, i.e. we
set m̃r,ii = 0 for all i≥ I, I ∈ [1, p] and m̃r,(I−1)(I−1)�
m̃r,II . Thereby, we obtain a reduced order DAE sys-
tem, which can be Schur transformed.

Theorem 1. The quasi-Schur Transformation stabi-
lizes the reduced model Σr.

Proof. As M11 is s.p.d., Mr has to be symmetric posi-
tive semi-definite as well. Furthermore, Kr must have
negative eigenvalues. Otherwise, Σr is stable accord-
ing to [5].

Since M and K can obviously be simultaneously
diagonalized (e.g. with eigenbasis of K−1M), the sys-
tem domain can be represented as a direct sum of
eigenspaces, i.e.:

λ (Kr) = ∑
i

νiλ (K)i, ∑
i

νi = 1, (8)

hold for all eigenvalues of Kr. Now, given (3) and let
P,N ⊂ {1, ...,n+ k} set of indices corresponding to
the positive and negative eigenvalues of K, (8) can
only be negative if ∑i∈P νi � ∑i∈N νi. That is to say,
given the structure of Σ , the subspaces of the reduced
system corresponding to these negative eigenvalues is
dominated by the electric domain. These subspaces
must obviously also be quasi-algebraic, as λ (Mr) =

∑i∈P νiλ (M)i.
Finally, when Σ̃r is Schur transformed, we have:

K̃s = K̃r,(1:I,1:I)− K̃r,(1:I,I:p)K̃−1
r,(I:p,I:p)K̃r,(I:p,1:I) (9)

which is s.p.d as K̃r,(1:I,1:I) is s.p.d. and K̃−1
r,(I:p,I:p)

s.n.d. That makes the quasi-Schur Transformed sys-
tem stable according to [5].

Remark 1. In industrial software, the quasi-Schur
Transformation introduced in [2] is actually modi-
fied [4]. The index I is obtained by K̂r=TT

KKrTK and
then setting I such that K̂r,ii < 0 for all i ≥ I. This
equivalent criteria is easier to implement and more ro-
bust.

4 Numerical Experiments

We have performed ‘Schur after MOR’ on the orig-
inal micro-mechanical model form [2] as well as on
a novel frequency tuneable piezoelectric energy har-
vester introduced in [3] and have reliably obtained
stable reduced models. Furthermore, we have found
the considered (quasi-algebraic) subspaces to coin-
side even when taking numeric errors into account.

Table 1 shows the computation times1 of ‘Schur
after MOR’ compared to ‘MOR after Implicit Schur’
from [3] for the reduction of the tuneable harvester
model with 24643 degrees of freedom.

Reduced Order Schur after MOR MOR after impl. Schur

30 36.98s 52.85s
90 41.48s 57.24s
240 57.42s 71.11s

Table 1. Computation time of ‘Schur after MOR’ vs. ‘Schur
after impl. MOR’.

5 Conclusion and Outlook

In this work, we have given a mathematical proof that
quasi-Schur Transformation applied to reduced mod-
els of piezoelectric energy harvesters obtained by pro-
jective MOR stabilizes the models.

Further, we have found ‘Schur after MOR’ reli-
able in generating stable reduced models in this spe-
cific use-case and have shown the efficiency of it com-
pared to ‘MOR after Implicit Schur’ (∼30% decrease
of computation time).

In the next step, one can compare quasi-Schur
Transformation with conventional stabilizing method,
e.g. by simply removing the unstable part of the sys-
tem.
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Summary. In this work, a compact model of a miniatur-
ized thermoelectric generator for powering the electrically
active implants, embedded into a human tissue is presented.
As heat generation by blood perfusion is a temperature de-
pendent effect, the resulting finite element model has a non-
linear input term. To overcome this difficulty, we linearize
the load vector by snapshotting prior to applying mathemat-
ical model order reduction.

1 Introduction

Implantable medical devices are used to provide med-
ical treatments and support the diagnosis [1]. Cur-
rently, the electrical energy for implantable biomed-
ical devices is provided by integrated batteries which
have certain energy storage capacity and chemical
side effects. As human body is a bountiful source
of thermal energy, harvesting this energy to power
biomedical implants will increase their lifetime and
safety than conventional devices. In this work, we

Fig. 1. Schematic of a thermoelectric generator embedded
in the fat layer; tissue model as suggested in [2]

.

present the model of a thermoelectric generator (TEG)
embedded into a simple three layer tissue structure
composed of muscle, fat and skin (See Fig. 1). It
shall convert thermal into electrical energy and so
power the medical implants. To enable an efficient

transient simulation and parameter studies, we ap-
ply mathematical model order reduction (MOR) tech-
nique, which provides compact but accurate thermal
model of a human TEG. As MOR is proven to work
well for linear thermal models [3], we have to lin-
earize the temperature dependent perfusion heat gen-
eration rate. In the approach presented here, the load
snapshots are obtained at discrete time intervals and
weighted to obtain a single linearized load for the
model to be reduced, difference from [4] where, the
time consuming singular value decomposition (SVD)
of the snapshots is performed for another thermal sys-
tem with temperature-dependent input vector.

2 Model Description

The heat conduction in the human tissue can be de-
scribed by the bio-heat equation of Pennes [5]:

ρc
∂T
∂ t

= ∇κ∇T +Qb +Qm, (1)

where, Qb = ρbcbωb(Ta−T (r̄, t)) and Qm are perfu-
sion and metabolic heat generation rates, respectively,
ρ , c, κ are the density, specific heat and thermal con-
ductivity of the three tissue types, ρb, cb denote the
thermal properties of blood and ωb is a measure of
perfusion. T (r̄, t) is the resulting temperature distri-
bution and Ta = 37◦C, is the temperature of arterial
blood. The spatial discretization of (1), via e. g. finite
elements leads to a system of n ordinary differential
equations with non-linear input:

∑
n

{
E · Ṫ (t) = A ·T (t)+Q(T )
y(t) =C ·T (t), (2)

where, A,E ∈ Rn×n are the global heat conductiv-
ity and heat capacity matrices, Q(T ) ∈ Rn×1 is the
temperature-dependent load vector and C ∈ Rp×n is
the output matrix. n is the dimension of the system
and p is the number of user defined outputs.

3 Methodology

As the finite element method discretizes the domain
into e finite-elements and n nodes, Q(T ) can be lin-
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earized as:

q = ρbcbωb(Ta−Te(t))+Qm, (3)

where, Te(t) is the vector of average temperatures per
each finite-element e distributed over n nodes. We
construct a snapshot matrix X ∈ Rn×s at s points in
time (ts), which columns are comprised of linearized
heat generation vectors, qi:

X = [q1 q2 q3 ... qs]n×s, (4)

The final load vector Q̄, is obtained by taking the
weighted average of these snapshots:

Q̄ =
s

∑
i=1

wiqi, (5)

where, wi denote the weights, which still have to be
defined. After applying the block-Arnoldi algorithm
[6] to (2), we obtain the reduced order model:

∑
r

{
Er · ż(t) = Ar · z(t)+ Q̄r
y(t) =Cr · z(t),

(6)

where, Er =V T EV, Ar =V T AV, Q̄r =V T Q̄, Cr =CV
and V ∈ Rn×r is a projection matrix with r� n.

4 Results

Figure 2 shows the study carried out for the selec-
tion of optimal weights. The snapshots are distributed

Bottom Surface of TEG

Fig. 2. Temperature Result comparison between full and re-
duced model at the bottom surfaces of TEG with different
weighing of snapshots.

into three groups; separated by the dashed lines. As
expected, the time domain in which, we weigh the
snapshots strongly, shows the better match between
the full and the reduced model. Based on this out-
come, optimal weights are selected. Initial state was
considered from the steady state thermal simulation

Fig. 3. Result comparison between full and reduced model
at the top and bottom surfaces of TEG and skin surface.

with heat transfer coefficient of 20 W/m2/K and am-
bient temperature of 15 ◦C. Transient thermal simula-
tion was performed with final heat transfer coefficient
of 5 W/m2/K. Figure 3 shows the result comparison
between the full model of order 127,944 and reduced
model of order 30. With optimal weights, an excellent
match is obtained.

5 Conclusion

In this paper, a new approach is presented to consider
a nonlinear-input for model order reduction in thermal
field problem. We have linearized the temperature de-
pendent load vector, which allows the use of Krylov
subspace based MOR. In future the linearization pro-
cedure will be investigated in more details.
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Summary. First, a rough outline of Tellinen’s scalar mag-
netic hysteresis model is presented. Special emphasis is laid
upon the ideas and the realization. Second, these ideas are
taken up and are extended w.r.t. thermal behavior. In the
end, a temperature dependent scalar magnetic hysteresis
model is derived and discussed.

1 Introduction and Motivation

In some situations, the thermal behavior of ferromag-
netic material is a very important issue. Research
shows a significant change of magnetic properties for
increased temperature [1]. Several magnetic hystere-
sis models exist, but only some of them were extended
to a temperature dependence (e.g. [2,3]). As far as we
know, Tellinen’s model [5] was not one of them. In
comparison to other models, Tellinen’s model is easy
to understand, easy to implement and cheap to com-
pute. Nevertheless, its simulation results are still com-
petitive [4]. Another advantage of this model is its fru-
gality w.r.t. the input parameters. We aim at retaining
these properties within our thermal extension.

2 Tellinen’s Hysteresis Model

In [5], a scalar magnetic hysteresis model is intro-
duced. It is derived from phenomenological consider-
ations and is based on the limiting hysteresis curves as
sole input, which can be derived from measurements.

B+
sat

B−
sat

h[A/m]

b[
T
]

B+
sat

B−
sat

h[A/m]

b[
T
]

Fig. 1. a) Example of a limiting hysteresis curve (blue) and
the resulting path starting from the origin (green).
b) Idea of Tellinen’s model: limiting hysteresis curves B+

sat
and B−sat are in blue, the working point (h,b) in red and the
resulting direction of change, i.e., db

dh , in green.

Input data. If a material is polarized strong enough,
say magnetic field strength h < 0, it will be fully
magnetically saturated. Then, increasing h results in

a material specific relation between h and the mag-
netic flux density b, the saturation curve B+

sat(h). The
C1−function B+

sat(h) is the sole input of Tellinen’s
model, since the saturation curve for the opposite
polarization is assumed to be given by B−sat(h) :=
−B+

sat(−h), see Fig. 1. It is assumed that it holds,

B+
sat(h)< B−sat(h) , lim

|h|→∞

B−sat(h)−B+
sat(h) = 0, (1)

i.e., B+
sat, B−sat form a closed loop, see Fig. 1. Moreover,

the derivative shall be bounded from below by µ0

d
dh B+

sat(h)≥ µ0 > 0 , lim
|h|→∞

d
dh B+

sat(h) = µ0 . (2)

Due to (2), it is a model for ferromagnetic materials.
Realization. Now, Tellinen’s model linearly interpo-
lates the limiting saturation curves B+

sat and B−sat at in-
termediate points in a particular way. To this end, let

I =
{
(h,b) ∈ R2 ∣∣B+

sat(h)≤ b≤ B−sat(h)
}

(3)

denote the set of possible states. For any (h,b)∈ I, the
relative position between the boundaries is given by

λ =
B−sat(h)−b

B−sat(h)−B+
sat(h)

∈ [0,1]. (4)

For an increasing h, the derivative of b is defined by

db
dh = λ

dB+
sat(h)
dh +(1−λ )µ0 (5)

and for a decreasing h by

db
dh = λ µ0 +(1−λ )

dB−sat(h)
dh . (6)

A physical motivation is given in [5]. By construction,
the model respects the boundaries B+

sat and B−sat, that
is, an analytical solution (h,b), starting at (h0,b0) ∈ I
and calculated by (5) and (6), stays within I.

3 Thermal Extension of Hysteresis

Analogously to Tellinen’s model, we describe the ther-
mal extension via partial derivatives for the increasing
and decreasing values. The behavior on the saturation
surfaces is physically motivated and all intermediate
points are approximated by linear interpolation.
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Input data. A C1-function b = B+
sat(h,T ) is needed

that describes the saturation surface of b for a given
field strength h and temperature T . Analogously to
(1), (2) and (3), we define and assume

∂

∂h
B+

sat(h,T )≥ µ0 , lim
|h|→∞

∂

∂h B+
sat(h,T ) = µ0 ,

B+
sat(h,T )< B−sat(h,T ) :=−B+

sat(−h,T ) ,

lim
|h|→∞

B−sat(h,T )−B+
sat(h,T ) = 0 ,

IT =
{
(h,b,T ) ∈ R3 ∣∣B+

sat(h,T )≤ b≤ B−sat(h,T )
}
.

Physical motivation and modeling. The given, lim-
iting B+

sat(h,T ) could be derived from measurements.
For an increasing temperature, it can be argued that
the system gains energy and therefore its state can be
changed. Hence, in this case, the thermal extension
tries to follow B+

sat and B−sat as good as possible by us-
ing linear interpolation. Reducing the temperature of
the material is equivalent to reducing its energy. Thus,
the state of the material is frozen, whenever possible.
But the working point (h,b,T ) has to stay in IT.
Computation. For (h,b,T ) ∈ IT, the linear interpola-
tion coefficient λ is given by (4) and the partial deriva-
tives w.r.t. h by (5) and (6), where B±sat(h) is replaced
by B±sat(h,T ). For an increasing temperature change,
i.e., ∂T > 0, this model assigns b = b(h,T ) using

∂b
∂T

= λ
∂

∂T
B+

sat(h,T )+(1−λ )
∂

∂T
B−sat(h,T ) (7)

and for a decreasing temperature change, i.e., ∂T < 0,

∂b
∂T =λ min

(
∂

∂T B+
sat(h,T ),0

)
(8)

+(1−λ )max
(

∂

∂T B−sat(h,T ),0
)
.

See also Fig. 2. Eq. (8) respects (h,b,T ) ∈ IT by sub-
stituting the derivatives of B+

sat, B−sat by zero, only if it
is possible. Otherwise, measured values are used.
Properties. The definitions of the partial derivatives
(7), (8) ensure that we stay in IT, if solved analytically.
In general, the thermal extension is non-reversible.
Let assume h to be constant. Starting from (T0,b0),
the temperature is increased to T1 using (7). Then, T
is decreased back to T0 by (8). This yields the rever-
sal point (T1,b1) and the endpoint (T0,b2). Generally,
b0 6= b2 holds, see Fig. 2. There exists exactly one
stable loop, such that b0 = b2 holds, or all loops are
stable. Every non-stable loop converges to the stable
loop, if the temperature varies iteratively from T0 to
T1 and back. In the special case of h = 0, this leads
to a complete depolarization, i.e., b tends to zero. The
boundaries B+

sat(h,T ), B−sat(h,T ) are, in general, not
monotone w.r.t. T . At first, an increase of the temper-
ature may result in an increase of the magnetic satura-
tion, but then, a decrease is observed (e.g. NdFeB [1]).
So, a curvy shape as in Fig. 2 is possible, which em-
phasizes the necessity of a thermal model.

(T0, b0) (T1, b1)

B+
sat

B−
sat

T [K]

b[
T
]

(T0, b2)
(T1, b1)

B+
sat

B−
sat

T [K]

b[
T
]

Fig. 2. Limiting saturation functions B+
sat(h,T ) and

B−sat(h,T ), for fixed h, are in blue. The arrows represent
the assigned values of ∂b

∂T for an increase (upper plot) and
decrease (lower plot) of the temperature T . The solution
b(h,T )|h=const. for an increase of the temperature from T0
to T1 and decrease back to T0 is shown is red.

Simulation. Our next step is to embed this extended
model into a magnetic field simulation. Currently, we
investigate an adjustment step after each time step of
the magnetic field and temperature simulation. In this
step, a modification of b with (7) and (8) is carried
out. In particular, this yields the red curves in Fig. 2.

4 Conclusion

A scalar magnetic hysteresis model with temperature
dependence was defined based on Tellinen’s model.
The objective of an easy understanding and imple-
mentation is fulfilled. A comparison to other thermal
models is still pending and is part of further research.
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Summary. In the last few years, many efforts have been
made in developing optimized Schwarz methods for solving
the Helmholtz equation. However, to the best of our knowl-
edge, only open domains were considered. This abstract
presents an analysis of the Schwarz method for closed ge-
ometries, i.e. resonators, and shows the limitations of state-
of-the-art schemes designed for open problems.

1 Introduction

It is well known that large-scale time-harmonic wave
problems are hard to solve. This is explained by two
factors: i) the low convergence rate of iterative solvers,
which comes from the oscillatory nature of the prob-
lem [3]; ii) the memory scaling limitations of direct
solvers, which comes from the fill-in effect [4]. Do-
main decomposition methods are among the best can-
didates for tackling time-harmonic wave problems.
Basically, these techniques couple direct and itera-
tive strategies by: i) dividing the original problem into
(potentially overlapping) small sub-problems amenable
to direct solvers; ii) combining the sub-problems with
an iterative approach.

One of the most famous domain decomposition
method is the Schwarz algorithm. In recent years,
many developments were made in optimizing this
technique for Helmholtz problems [1–3]. However,
to best of our knowledge, state-of-the-art optimized
Schwarz methods for time-harmonic wave problems
always assume an outgoing wave boundary condition.
While this assumption is satisfied by a large number
of applications (e.g. in scattering problems), it does
not cover the field of resonant cavity design.

In this abstract, we propose to analyze the behav-
ior of state-of-the-art optimized Schwarz methods for
the Helmholtz equation, when they are applied to a
closed geometry, and to highlight the major problem
appearing in this context.

2 The non-overlapping Schwarz
algorithm

Let us consider the following time-harmonic wave
problem: {

divgrad p+ k2 p = f on Ω ,
p = 0 on Γ ,

where p is the unknown function, g a known source
term, k the wavenumber, Ω the closed domain de-
picted in Fig. 1 and Γ its boundary. This problem can
be solved by splitting the domain in two (or more)
non-overlapping subdomains Ω0 and Ω1, and by us-
ing the following iterative scheme (indexed by n):

divgrad pn+1
i + k2 pn+1

i = f on Ωi,

ni ·grad pn+1
i +S (pn+1

i ) = gi j on Σi,

pn+1
i = 0 on Γ ,

where

• S is the so-called transmission operator of the
optimized Schwarz algorithm;

• i ∈ {0,1} and j ∈ {1,0} for this two subdomains
example;

• pn
i is the solution of the iterative procedure at iter-

ation n and on domain Ωi;
• Σi designates the artificial boundary introduced in

Ωi by the splitting, as depicted in Fig. 1
• ni refers to the outwardly oriented unit vector nor-

mal to Σi;

and with

gi j =−n j ·grad pn
j +S (pn

j).

Once the Schwarz algorithm has converged, the so-
lution p of the original problem is recovered by con-
catenating the solutions p0 and p1.

x

y

Ω0 Ω Ω1

Γ

n0

n1

Σ0

Σ1

`/2 `/2

h

Fig. 1. Domain Ω .

It can be shown that the convergence rate of this
numerical scheme is governed by the transmission op-
erator S , which is optimally the Dirichlet to Neu-
mann map of the problem on Σi. Unfortunately, this
optimal operator1 cannot be used in practice, since

1 Which in our case would lead to a convergence in two
iterations.
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it is non-local. Therefore, the design of an optimized
Schwarz method relies on finding an accurate local
approximation of the optimal operator S .

3 Transmission operators

In the case of an open problem, it can be shown [3]
that the optimal operator S is given by the symbol

λopen(s) = i
√

k2− s2,

which can be approximated by:
i) the constant value [2]

λ
const
open ≈ ik;

ii) a second order polynomial [3]

λ
poly
open(s)≈ a+bs;

iii) a rational Padé approximation [1]

λ
padé
open (s)≈C0 +

Np

∑
p=1

Aps2

1+Bps2 ;

where a, b, C0, Ap and Bp are (possibly complex) con-
stants coming from the polynomial and rational ap-
proximations.

In the case of the closed problem described in sec-
tion 2, the aforementioned optimal transmission con-
dition (and hence its localized approximations) is un-
fortunately not valid anymore. We showed that for
closed domains with homogeneous Dirichlet bound-
ary conditions, the symbol λclose(s) of the optimal op-
erator writes:

λclose(s) =
√

k2− s2 cot
(√

k2− s2 `

2

)
,

where ` the characteristic length of Ω as depicted in
Fig. 1. In order to create a local approximation of this
optimal symbol, many approaches can be followed.

4 Open transmission conditions for
closed problems

In this work, we investigated the effectiveness of the
following approximation:

λclose ≈ λopen,

this choice being motivated by the pragmatical argu-
ment that local approximations of λopen are already
implemented in finite element frameworks such as
GetDP2 or FreeFEM++3. In particular, we showed

2 getdp.info
3 www.freefem.org

that the convergence radius ρ(s) of the fixed-point
Schwarz scheme, presented in section 2, writes:

ρ(s) =

{
1 if s2 ≤ k2,

exp
[
−`
√

s2− k2
]

if s2 ≥ k2.

In other words, the convergence of the Schwarz algo-
rithm is jeopardised by the propagating modes of the
transmission condition. It is also worth noticing that
when using the local approximations of λopen (pre-
sented in section 3) the situation cannot be improved:
modes such that s2 ≤ k2 will lead to a stagnation or a
divergence of the scheme, as showed in Fig. 2.
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2

s

|ρ
(s
)|

λclose ≈ λconst
open

λclose ≈ λ
poly
open

λclose ≈ λ
padé
open

Fig. 2. Modulus of the convergence radius ρ(s).

5 Rational approximation of λclose

Of course, a more effective solution is to directly
approximate λclose(s), and a rational approximation
seems appropriate and is currently investigated.
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diriger des recherches, École Normale Supérieure de
Lyon, France, 2012.

60

getdp.info
www.freefem.org


A hydrodynamic model for 2D-3D electron transport in silicon devices
Giovanni Mascali1 and Vittorio Romano2
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Summary. The paper presents a hydrodynamic model for
electron transport in a MOSFET channel. One of the main
results is that the source terms due to all the principal scat-
tering mechanisms of the 2D and 3D electrons are com-
puted, which is extremely important, for example, for a cor-
rect determination of the electron mobility. In particular we
consider the anisotropy of the scattering of the 2D electrons
with the acoustic phonons, the scattering with the remote
surface optical (SO) phonons of SiO2 and that with surface
roughness and impurities, this latter is considered also for
the 3D electrons. Moreover, we furnish an expression for
the part of the collision operator involving transitions from
2D electrons to 3D ones and vice versa, proving that the to-
tal number of electrons is conserved, as physically required.

1 Description of the model

In Metal Oxide Field Effect Transistors (MOSFETs),
when the channel length is of the order of tents of
nanometers, it is necessary to consider quantum ef-
fects for a correct description of the charge transport.
In fact, large electric fields normal to the Si-SiO2 in-
terface causes the formation of potential wells, whose
effect is that of confining charge carriers to a region
close to the interface. Carriers are therefore free to
move parallel to the interface, but are tightly confined
in the direction normal to it. This confinement leads
to quantized energy levels (see Figs. 1, 2).

Fig. 1. Schematic representation of electron confinement in
the z–direction due to a potential barrier

In order to reduce the computational burden, it is
convenient to divide electrons in two populations: 3D

Si

z

Continuous energy 
spectrum

spectrum
Discrete energy

Confining potential

threshold energy

SiO2

Fig. 2. Energy spectrum.

electrons, which are free to move in all the directions
and 2D electrons that are confined in a plane. Near
the silicon/oxide interface the two populations coex-
ist, while in the remaining part of the device only the
3D component needs to be considered because quan-
tum effects can be neglected there. It is possible to
make a decomposition also in the momentum space,
and consider electrons with energy higher than a suit-
able threshold value as 3D.

One of the main issues in the construction of a
macroscopic model is to take into account the most
important scattering mechanisms, in particular those
which bring electrons from the 2D population to 3D
one. Here, we propose a suitable adaptation to the
macroscopic case of an approach introduced by Fis-
chetti and Laux in the context of a Monte Carlo sim-
ulation [1]. We also prove that the proposed collision
operators conserve the total number of electrons.

All the main scattering mechanisms are consid-
ered, among which those of electrons with the acous-
tic and non polar optical phonons, and those with the
interface modes and impurities including the screen-
ing effects. For the acoustic scattering, the anisotropy
effects are taken into account. The calculation of the
2D electrons energy levels is made using the effec-
tive mass approximation, and it is also assumed that
the potential barrier is large enough that the envelope
wave functions vanish at the Si/insulator interface and
at the other boundary of the quantum region.

The 2D electrons are described by a Schrodinger–
Poisson system coupled to a set of macroscopic trans-
port equations for each subband population [2]. The
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3D electrons are described by a macroscopic system
of transport equations.
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Direct simulation Monte Carlo of the Wigner transport equation
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Summary. The Wigner transport equation is solved by Di-
rect Simulation Monte Carlo, based on the generation and
annihilation of signed particles. In this framework, stochas-
tic algorithms are derived using the theory of pure jump pro-
cesses with a general state space. Numerical experiments on
benchmark test cases are shown.

1 Introduction

The continuous scaling down of semiconductor de-
vices is nowadays at a point, where active lengths
are of the order of only a few tens of nanometers.
Effects such as particle tunneling through source-to-
drain potential profiles are now highly relevant and
cannot be ignored. From this perspective, only full
quantum models are capable of describing the appro-
priate physics. A well-known model is the Wigner
equation which can be augmented by a Boltzmann-
like collision operator accounting for the process of
decoherence. The Wigner equation writes [5]:

∂ fW
∂ t

+
h̄

m∗
k ·∇x fW = Q( fW ) (1)

Q( fW ) =
∫

VW (x,k− k′) fW (x,k′)dk′ (2)

VW (x,k) =
1

ih̄(2π)d × (3)

∫

dx′ e−ik·x′
[

V

(

x+
x′

2

)

−V

(

x−
x′

2

)]

(4)

whereVW is the Wigner potential, andV (x) is the po-
tential energy. The Wigner potential is a non-local po-
tential operator which is responsible of the quantum
transport, it is real-valued, and anti-symmetric with
respect tok. The numerical solution of the Wigner
equation can be obtained using high-order finite dif-
ference solvers [6]. To avoid discretization problems,
particle Monte Carlo (MC) methods can be used (see
[2] for a review), despite the large computational times.
In the realm of the MC methods, theSigned parti-
cle Monte Carlo approach [4] seems to be the most
promising, because it can be understood in a proba-
bilistic framework [3]. In fact, the quantum evolution
term(2) can be interpreted as a scattering mechanism
where a new pair of particle, with real-valued oppo-
site weight, is added to the system.

The main result is that appropriate functionals of
this stochastic process satisfy a weak form of the
Wigner equation. Moreover, this approach has certain
advantages compared to other derivations. In particu-
lar, it suggests a variety of new algorithms as well as
some of the algorithms previously considered in the
literature. However, one should note that the grow of
signed particles is exponential therefore showing the
necessity for an annihilation process. Such process
can be implemented by exploiting the fact that two
particles with opposite signs and in the same phase-
space cell have a total contribution to the Wigner
function equal to zero (as they cancel out due to their
opposite signs).

2 Simulation results

As benchmark, we have considered a one dimen-
sional potential barrier with rectangular and gaussian
shapes. The initial condition is a gaussian wavepacket.
Since for pure states the Wigner and Schrödinger
equations are completely equivalent, in figure 1 we
have compared the MC mean density with that ob-
tained using a high-order deterministic Schrödinger
equation solver [1]. The agreement between the two
mean densities is very good.
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Fig. 1. The mean density versus position at simulation time
20 fsec.

Moreover a Resonant Tunneling Diode can be
studied using this methodology and simulations re-
sults will shown during the conference.
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Summary. Double gate graphene field effects transistors
are simulated in the nanoscale case. The model is based on
a system of drift-diffusion equations for electrons and holes.
The numerical method is based on the Scharfettel and Gum-
mel scheme. A special treatment of the Poisson equation is
adopted for taking into account the charge in the graphene
sheet. The characteristic curves for fixed gate voltages and
for fixed sousrce drain voltage have been obtained.

1 Introduction

In the last years an increasing interest has been de-
voted to graphene field effect transistors (GFETs)
as potential candidates for high-speed analog elec-
tronics, where transistor current gain is more impor-
tant than ratio current ON/current OFF. Several type
of GFET will be studied and optimized: top-gated
graphene based transistor, obtained synthesizing gra-
phene on silicon oxide wafer, and double gate GFETs.

For the simulation of charge transport in graphene,
some simple drift-diffusion models are available in
the literature. Recently, more accurate hydrodynam-
ical models have been formulated [1–3] by exploiting
the maximum entropy principle. Another approach is
to get mobility models by simulations based on de-
terministic solutions of the semiclassical Boltzmann
equation for electrons in graphene by using discontin-
uous Galerkin (DG) method or based on Monte Carlo
simulations [4, 5].

Here we compare the results of the simulations
for top-gated and double gate GFETs obtained with
the above mentioned models. In particular, the char-
acteristic curves will be studied.

2 Mathematical model

The mathematical model we adopt to simulate the
charge transport in graphene is the bipolar drift-diffu-
sion in 1D case,

∂n
∂ t
− 1

e
∂

∂x

(
µnkBTL

∂n
∂x
− enµn

∂φ

∂x

)
= 0,

∂ p
∂ t

+
1
e

∂

∂x

(
−µpkBTL

∂ p
∂x
− epµp

∂φ

∂x

)
= 0,

where n(t,x), p(t,x) are the graphene electron density
and hole density respectively, e is the positive elemen-
tary charge, kB is the Boltzmann constant, TL is the lat-
tice temperature (kept constant), µn(x) and µp(x) are
the mobility models for electrons and holes respec-
tively and φ(x,y) is the electric potential. We adopt
the mobility model proposed in ref. [6] given by

µs(x) =
νs

[1+(νsE/vsat)γ ]1/γ
,

where E = |∂φ/∂x| is the absolute value of the x-
component of the electric field, vsat is the saturation
velocity (we take the value 0.2 µm/ps), γ ≈ 2 and

νs(x) =
µ0

(1+ s/nre f )α
,

where µ0 = 0.4650 µm2/V ps is the low field mobil-
ity, nre f = 1.1×105 µm−2 and α = 2.2. The symbol
s indicates the carrier density: s = n for electrons and
s = p for holes.

The 2D Poisson equation for the electric potential
reads

∇ · (ε∇φ) = h(x,y),

where

h(x,y) =

{
e(n(x)− p(x))/tgr if y = ygr

0 if y 6= ygr

being ygr the y-coordinate of the graphene sheet (see
Fig. 1), and ε is given by

ε(x,y) =

{
εgr if y = ygr

εox if y 6= ygr

where εgr and εox are the dielectric constants of the
graphene and oxide respectively.

3 Numerical results

Here some preliminary results are plotted. The de-
vices is depicted in Fig. 1. The length is 100 nm. The
width of the lower oxide (SiO2) is 10 nm while those
of the upper oxide (SiO2) is 5 nm. The source and
drain contacts are long 25 nm. The two gate potential
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are set as equal. At the metallic contacts the total volt-
age including the work function is considered equal to
0.25 V. Indeed it depends on the specific material the
contacts are made of. In Fig. 2 the shape of the elec-
trical potential is plotted when the gate-source poten-
tial is 0.3 V and the source-drain-potential is 0.4 V.
The Fig. 3 shows the characteristic curve current ver-
sus gate voltage with source drain voltage equal to 0.2
V while Fig. 4 shows the current versus source drain
voltage for several values of the gate voltage. Note
that above the inversion voltage (0.25 V) the major-
ity carriers are the electrons while below the inver-
sion voltage the majority carriers are the holes. The
behavior of the current is very different from the tra-
ditional semiconductors like Si or GaAs on account
of the zero gap in the energy band. The major issue is
the difficulty of fixing the off state which require an
accurate calibration of the voltage.

Fig. 1. Schematic representation of a GFET.
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Summary. We present an overview of optimization mod-
els for semiconductor devices. In particular, we are going
to focus on the asymptotic model hierarchy and how it can
be exploited to speed-up the design cycle by tailored opti-
mization algorithms. Further, we present analytical results
which show how the different optimization problems are
connected in the asymptotic limit.

1 Introduction

During the last decade there was an increasing de-
mand for tailored optimization algorithms in the field
of optimal semiconductor design (see, e.g., [1, 3, 5]
and the references therein), which are now also used
for the doping optimization of optoelectronic devices
[4].

Due to the variety of semiconductor devices there
are various models used for the appropriate device
simulation and thus also for their optimization. An
overview of the classical semiconductor model hier-
archy is given in Figure 1. They range from the meso-
scopic Boltzmann equation (c.f. [2] for an optimiza-
tion approach) to the well-understood drift diffusion
model.

Fig. 1. Hierarchy of semiconductor models

The shrinking device sizes demand even for the
usage of quantum models, which were also already
used for optimization purposes (see [1] and the refer-
ences therein).

Here, we are planning to give an overview on the
numerical algorithms developed so far, as well as on
some analytical results for the asymptotic analysis of
semiconductor optimization models.

2 Numerical Semiconductor
Optimization

The overall goal for the design of tailored optimiza-
tion algorithms is that the numerical effort should be
in the range of approximately ten forward simula-
tions. Hence, black-box optimization cannot be used,
since they normally scale with the number of design
variables. To get around this problem, one needs to
rely on methods for PDE constrained optimization
which provide the necessary derivative information
using the adjoint variables.

Such descent algorithms are meanwhile available
for the various models in the hierarchy. They perform
well and give satisfactory results. Available are first
order algorithms as well as second order ones, which
can be used for the optimization of doping profiles,
e.g., in the on-state and/or the off-state of the de-
vice [1], the identification of parameters from mea-
surements or other inverse problems, like LBIC.

Fig. 2. Optimized Doping Profiles

Further, the convergence for more complex mod-
els can be accelerated by the usage of the so-called
space-mapping technique, which also allows for an
elegant coupling of optimization algorithms and com-
mercial software packages. Here, one needs only eval-
uations of the more complex model, while the opti-
mization loop is implemented for the simpler set of
equations (see [3] and the references therein).
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3 Asymptotic Analysis for
Semiconductor Optimization Models

The very promising performance of the space-mapping
technique suggests that there should be also an asymp-
totic connection of the semiconductor optimization
models, which is already well established for the for-
ward models.

The main challenge is here that the optimal so-
lutions are in general not unique, such that one can
only expect weak convergence in the spirit of Γ –
convergence.

This shall be exemplified for the optimization of
the nonlinear Poisson problem:

min
(V,C)

J(V,C), where

J(V,C) =
1
2
‖n(V )−nd‖L2

+
1
2
‖p(V )− pd‖L2 +

γ

2
‖∇(C−C̄)‖L2

subject to

eλ (V,C) :=−λ
2
∆V −n(V )+ p(V )+C = 0.

Here, the solutions depend on the scaled Debye
length λ and it is a priori not clear if they will con-
verge in the quasi-neutral limit. But exploiting a pri-
ori estimates, the concept of Γ –convergence and the
equi-coercivity of the functionals one can prove the
the convergence of minima and minimizers (for de-
tails see [5]). Hence, one gets an analogous results as
for the quasi-neutral limit for the forward problem,
which is summarized in Figure 3.

subject to

subject to

Fig. 3. Convergence diagramm

The analytical results are also confirmed by nu-
merical simulations, which are depicted in Figure 4,
where one can nicely observe the convergence of the
optimized potentials Vλ in the limit λ → 0.

These ideas were also extended to the semi-classical
limit in an optimization problem for the quantum drift
diffusion model, where one can also prove the conver-
gence of minima and minimizers [1].

Acknowledgement. I would like to thank my coauthors for
their valuable collaboration during the last years.

Fig. 4. Optimal potential Vλ for various values of λ
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Summary. We examine projection-based model order re-
duction of Galerkin-type for linear dynamical systems. A
transformation of the original system guarantees that any re-
duced system inherits asymptotic stability. The transforma-
tion matrix satisfies high-dimensional Lyapunov equations.
We develop a frequency-domain approach, where the solu-
tion of the Lyapunov equations represents a matrix-valued
integral. Consequently, quadrature methods yield approxi-
mations in numerical computations.

1 Projection-based Model Order
Reduction

We consider linear time-invariant dynamical systems

Eẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t) (1)

with matrices A,E ∈ Rn×n, B ∈ Rn×nin , C ∈ Rnout×n.
The state variables x : I→ Rn, the inputs u : I→ Rnin

and the outputs y : I→ Rnout represent functions on a
time interval I = [t0, tend]. Let the mass matrix E be
non-singular, while generalisations to descriptor sys-
tems with a singular mass matrix are possible. We as-
sume that the linear dynamical system (1) is asymp-
totically stable, i.e., all eigenvalues of the matrix pen-
cil λE−A exhibit a negative real part.

The aim of model order reduction (MOR) is to
construct a linear time-invariant dynamical system

Ē ˙̄x(t) = Āx̄(t)+ B̄u(t)
ȳ(t) = C̄x̄(t) (2)

with matrices Ā, Ē ∈Rr×r, B̄ ∈Rr×nin , C̄ ∈Rnout×r of
much lower dimension r� n. Yet the outputs of (1)
and (2) should agree, i.e., y(t)≈ ȳ(t) for all t ∈ I.

In projection-based MOR, each approach deter-
mines two projection matrices V,W ∈ Rn×r of full
rank. We assume that V is an orthogonal matrix satis-
fying V>V = Ir with the identity matrix. The reduced
matrices within the system (2) read as

Ā=W>AV, B̄=W>B, C̄=CV, Ē=W>EV. (3)

A Galerkin-type projection-based MOR is charac-
terised by the choice W = V in (3), where just an ap-
propriate matrix V has to be determined. Well-known
Galerkin techniques are, for example, the one-sided
Arnoldi method and proper orthogonal decomposition
(POD), see [1].

2 Stability Preservation

In many MOR methods, the reduced system (2) may
be unstable, although the original system (1) is asymp-
totically stable. Several special techniques were con-
structed, which guarantee a stable reduced system.

If the matrix E is symmetric positive definite and
the matrix A is dissipative (A+A> is negative defi-
nite), then any Galerkin-type method yields an asymp-
totically stable system (2). Otherwise, the system (1)
can be transformed to an equivalent system satisfying
these properties, see [2, 4].

The involved transformation matrix M ∈ Rn×n is
symmetric positive definite and solves the generalised
Lyapunov equation

A>ME+E>MA+F = 0. (4)

Any symmetric positive definite matrix F yields an
admissible matrix M. A reduction of the transformed
system is equivalent to (3) with W = MV, see [5].

A direct solution of (4) is not possible for high di-
mensions n due to a huge computational effort O(n3).
Iterative techniques often produce low-rank factorisa-
tions

M≈ M̃ = ZZ> with Z ∈ Rn×k (5)

and k� n. However, the approximation M̃ is a sin-
gular matrix, which causes problems, cf. [5]. Further-
more, iterative methods like the ADI algorithm, for
example, require a low-rank factorisation

F = GG> with G ∈ Rn×` (6)

satisfying `� n, where F becomes just semi-definite.

3 Frequency-Domain Approach

Due to Parseval’s theorem, we write the solution of
the (generalised) Lyapunov equations (4) with (6) as
matrix-valued integrals in the frequency-domain. It
holds that

M =
1

2π

∫ +∞

−∞

S(ω)−1GG>S(ω)−H dω (7)

including the matrix
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S(ω) = iωE>−A> ∈ Cn×n, i =
√
−1. (8)

Phillips and Silveira [3] apply a quadrature rule with
positive weights to compute an approximation of the
integral (7). This approach yields a factorisation (5)
of rank k = q`, where q is the number of nodes in the
quadrature.

Alternatively, our idea is to apply the identity ma-
trix F = In in (4), which owns the trivial (high-rank)
factorisation F = InI>n (G = In) in (6). We assume
large sparse matrices A,E. Thus the matrix (8) inher-
its this sparseness. However, the inverse matrices are
dense in (7) and we never compute them explicitly.
Since we do not need the matrix M but the matrix-
vector product MV, the integral (7) simplifies to

MV =
1
π

Re
[∫ +∞

0
S(ω)−1S(ω)−HV dω

]
. (9)

Each evaluation of the integrand requires to solve
complex-valued linear systems, where r right-hand
sides appear with identical coefficient matrices. We
investigate the efficient numerical solution of the lin-
ear systems in this context. Furthermore, the perfor-
mance of quadrature rules is discussed.

4 Numerical Results for Test Example

In [7], a benchmark is a thermal model for a micro-
thruster unit. A spatial discretisation of the heat trans-
fer partial differential equation yields a linear dynami-
cal system (1). The state space dimension is n= 4257.
The number of inputs and outputs represents nin = 1
and nout = 7, respectively. This system is asymptot-
ically stable with a spectral abscissa about −0.0013.
The mass matrix E is diagonal with positive elements,
whereas the matrix A is not dissipative.

We use the one-sided Arnoldi algorithm with a
single real expansion point to generate reduced sys-
tems (2) via matrices (3). The reduced systems of di-
mension r = 1,2, . . . ,100 are arranged for the conven-
tional choice W = V as well as the transformed for-
mulation W = MV with (9). We compute the matrix-
valued integrals (9) by an adaptive quadrature, see [6].

Figure 1 illustrates the spectral abscissa of the ma-
trix pencils in the reduced systems. In the conven-
tional technique, the spectral abscissa is larger than
zero for 11 cases in the range 20 < r < 50, i.e., sta-
bility is lost. Alternatively, the MOR using (9) always
achieves a spectral abscissa below zero with a maxi-
mum about −0.0012 for all r = 1,2, . . . ,100.

For comparison, we calculate errors of the MORs
based on the transfer functions H of the linear dy-
namical systems. Therein, we restrict the analysis to
the first output of this benchmark. The relative error
between full-order model and reduced-order model
reads as ε = ‖HFOM −HROM‖H2/‖HFOM‖H2 using
the H2-norm, see [1]. Figure 2 depicts the errors ε for

the different reduced dimensions. We recognise that
the application of the stabilisation technique does not
deteriorate the MOR. Moreover, a smaller error often
appears for lower dimensions.
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Fig. 1. Spectral abscissa of matrix pencils in reduced-order
models for conventional system and transformed system.
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Fig. 2. Relative errors in H2-norm for MOR of conven-
tional system and transformed system.

References

1. A.C. Antoulas. Approximation of Large-Scale Dynami-
cal Systems. SIAM, Philadelphia, 2005.

2. R. Castañé Selga, B. Lohmann, and R. Eid. Stability
preservation in projection-based model order reduction
of large scale systems. Eur. J. Control, 18:122–132,
2012.

3. J.R. Phillips and L.M. Silveira. Poor man’s TBR: A
simple model reduction scheme. IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., 24:43–55, 2005.

4. S. Prajna. POD model reduction with stability guarantee.
In Proceedings of 42nd IEEE Conference on Decision
and Control, pp. 5254–5258, 2003.

5. R. Pulch. Stability preservation in Galerkin-type projec-
tion-based model order reduction. arXiv:1711.02912,
2017.

6. L.F. Shampine. Vectorized adaptive quadrature in MAT-
LAB. J. Comput. Appl. Math., 211:131–140, 2008.

7. MOR Wiki, morwiki.mpi-magdeburg.mpg.de
online document, cited May 14, 2018.

70



Shape optimization of a permanent magnet synchronous machine under
probabilistic constraints

Piotr Putek, E.Jan.W. ter Maten, and Michael Günther

Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
{putek,termaten,guenther}@math.uni-wuppertal.de

Summary. This paper proposes a robust and reliability-
based shape optimization method to find the optimal design
of a permanent magnet (PM) synchronous machine. Specif-
ically, a design of rotor poles and stator teeth are subjected
to the shape optimization under manufacturing tolerances
/ imperfections and probabilistic constraints. In a forward
problem, certain parameters are assumed to be random. This
affects also a shape optimization problem, which is formu-
lated in terms of a tracking-type robust cost functional and
which is constrained by probabilistic constraints in order to
attain a new desired, robust, design. The gradient is eval-
uated using the material derivative and the stochastic col-
location method. In the end, to illustrate our approach, we
provide the optimization results for a 2D model of the PM
machine.

1 Introduction

With the rapid development of the performance of PM
synchronous machines, they have become the main
type of driving motors for electric vehicles due to such
advantages as high efficiency in the whole working
region and good dynamic performance.

Compared with the conventional surface-mounted
PM synchronous machine, the ECPSM1 has a wider
speed range, because of the field-weakening and bet-
ter output torque characteristics [3]. However, it typi-
cally suffers from the considerable high level of the
cogging torque, which causes the undesired torque
and speed ripples, and acoustic noise and vibrations.

Yet, as a result of manufacturing processes, a de-
sign of electric machines is strongly affected by the
uncertainties in both, the geometrical and material pa-
rameters [5]. Thus, to provide the reliable simulations,
a mathematical model with random input data needs
to be considered [4]. This implies the use of the relia-
bility analysis and the robust framework for a design
assessment in order to investigate the risk of failure
and variability of the output performance functions.

In our paper, we formulate the shape optimiza-
tion in terms of both concepts. Therefore, we combine
the reliability-based and the robust approach for a de-
sign of the ECPSM in order to attain its new topology,
which meets both considered criteria.

1 The Electrically Controlled Permanent Magnet Excited
Synchronous Machine was investigated within the sci-
entific project under grant no. N510 508040, Poland.

2 Stochastic Forward problem

Let a mathematical model be described by the nonlin-
ear Poisson equation with q random input data p(ξξξ ) in
a two dimensional setting x ∈ D⊂ R2 with Lipschitz
boundaries ∂D ∈C2. Then, for a magnetic vector po-
tential A = (0,0,u) and χ := (x,ξξξ )∈D×Γ , the weak
form reads as: find u ∈Vρ such that(

ν(|∇u(χ)|2)∇u(χ),∇ϕ(χ)
)
= ( f ,ϕ(χ)) (1)

for all ϕ ∈ Vρ with Vρ = L2
(
H1

0 (D)
)
⊗ L2

ρ (Γ ). The
function f is given by f (χ)= J(χ)+νPM(χ)∇ ·M(χ),
where J, M(χ) and νPM(χ) denote the current den-
sity, the magnetization and the reluctivity of the PM,
respectively. A random vector ξξξ = (ξ1, . . . ,ξq)

> is de-
fined on some probability space (Γ ,Bq,ρdP) with Γ

the image of the joint probabilistic density function ρ ,
Bq the q-dimensional Borel space and ρdP a proba-
bilistic measure, respectively.

The stochastic reluctivity model incl. the soft iron
material ν (x) : D×R+

0 → R+ is given by [4]

ν(χ) =


νFe (x, |∇u(χ)|2)(1+δ1ξ1) for x ∈ Drot ,

νFe (x, |∇u(χ)|2)(1+δ1ξ2) for x ∈ Dsta ,

ν0(x)(1+δ2ξ3) for x ∈ Dair ,

νPM (x)(1+δ3ξ4) for x ∈ DPM ,

(2)

with vaccum reluctivity ν0 and the computational do-
main D = Dair ∪ DPM ∪ Drot ∪ Dsta composed of the
area of air, the region of the PM and the iron domain
for a rotor and a stator, respectively. We also consider
M(χ) = br(1+δ5ξ5)T(x), where br is the remanence
flux density and T(x) denotes the magnetization di-
rection. Scalings in (2) are δ1−4 = 0.15 and δ5 = 0.1.

2.1 Reliability and Robustness Analysis

We use the First-Order Reliability Method (FORM) [7]
to evaluate the reliability criteria.After transforming
the selected random variables r⊂ p into the standard
normal space by ξξξ r =Tξr(r), the reliability index β is
found by solving the constraint optimization problem

β ∗ = min
ξξξ r

β (ξξξ r) =

√
(ξξξ r
>

ξξξ r)

s.t. g(ξξξ r, ·) = 0,
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where g(ξξξ r, ·) is a limit state function. The failure
probability is approximated by P[gk(Ω ,u(·)) ≤ 0] ≈
Φ(−β ), where Φ(·) is the standard normal cumula-
tive distribution function. In consequence, the result-
ing normalized vector ξξξ

∗
r is used to modify the ran-

dom vector r∗, which influences the uncertainty quan-
tification of a model (1). To this end, we model p(ξξξ )
= [νsta

Fe (ξ1), ν rot
Fe (ξ2), νair (ξ3), ν∗PM (ξ4), b∗r (ξ5)] using

ξξξ as in (2). Then, under some assumptions [6], the
polynomial chaos-based response surface model of u
is given by

u(x;p) .
=

N

∑
i=0

αi (x)Ψi (p) , (3)

with a priori unknown coefficients αi and correspond-
ing basis polynomials Ψi with E [ΨiΨj] = δi j, where
E denotes the expected value. To calculate αi, we
combine a pseudo-spectral approach with the Stroud
quadrature formula of order 3 [4, 6]. Finally, the sta-
tistical moments are approximated by

E [u(x;p)] .
= α0(x),Var [u(x;p)] .

=
N

∑
i=1
|αi(x)|2, (4)

assuming Ψ0 = 1.
Similarly to the reliability-based topology method

[2], the proposed algorithm does not contain the nested
robust and reliability loops. For simplicity, we con-
sider as the limit state function fPM(xxxc) = νPM(χ)∇ ·
M(χ) and the target reliability index βt = 3.8, which
corresponds to the failure probability Pf = 10−4 .

3 Shape Optimization Problem

For the cost functional with Ω = ΩPM ∪ Drot ∪ Dsta,
defined in terms of the magnetic energy,

F(Ω ,u(χ)) =
1
2

∫
D

ν |∇u(χ)|2dx, (5)

the shape optimization problem is formulated as

inf
Ω

E
[
F
(
Ω ,u(·)

)]
+ ι

√
Var
[
F (Ω ,u(·))

]
(6a)

s.t. β (·)≥ βt , (6b)

u satisfies (1), (6c)

with ι = 3. To solve the problem (6a)–(6c), we use the
sensitivity-based algorithm [4]. The shape derivative
of (6a) is given by

dJ (Ω ,u(·)) =
(
[ν(|∇u(·)|2)−ν0]∇u(·)Vn1 ,∇λ (·)

)
∂D1

− (υ(·)PM M(·)Vn2 ,∇λ (·))
∂D2

,

with D1 =Drot∪Dsta and D2 =DPM. Under some reg-
ularity conditions w.r.t. F(Ω ,u(·)), an adjoint variable
λ ∈Vρ is the solution of the dual problem for φ ∈Vρ

a(λ ,φ)= (dE
[
F
(
Ω ,u(·)

)]
+ιd

√
Var
[
F (Ω ,u(·))

]
,φ),

where a bilinear form a(λ ,φ) has been derived in [1].
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Fig. 1: ECPSM topology.
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4 Conclusion

We integrated the reliability analysis and the robust
framework to accomplish a new design of the ECPSM,
shown in Fig. 1, which is resistant to input variations
and satisfies safety criteria. This resulted in a decrease
of statistical moments for the ET and the back EMF,
depicted on Figs. 2b and 2, by 5%/7% and 21%/23%
in rms sense, respectively.

References
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Summary. Differential algebraic equations with piecewise
smooth and possibly discontinuous equations are discussed.
In power electronic circuit simulation, such equations result
from modeling power semiconductor devices as controlled
switches, as ideal diodes, or with piecewise smooth charac-
teristics. With the ultimate goal of developing a piecewise
smooth circuit simulation tool, this paper presents initial re-
sults on theoretical and numerical solution approaches and
discusses the associated difficulties.

1 Introduction

One of the currently applied approaches for power
electronic circuit simulation is to model power de-
vices as ideal switches or with piecewise linear mod-
els [2,7,9]. Example tools include PSIM and PLECS.
Such tools handle ideal switch events and transitions
between segments of piecewise defined equations as
non-smooth modifications of the circuit equations. A
common solution technique is to advance the sim-
ulation with a numerical integration method until a
switch event is encountered, rollback the solution with
interpolation to the moment of switching, and modify
the circuit equations accordingly after switching be-
fore continuing the simulation. There is usually only
limited support for smooth nonlinear equations.

Another approach is to use compact behavioral
semiconductor device models [5] in conventional cir-
cuit simulation tools such as SPICE or SABER. The
highly nonlinear equations of such models are usually
also piecewise defined, but they are made sufficiently
smooth at transitions between segments to avoid con-
vergence problems. Small simulation steps are needed
to track switch transitions accurately and ensure con-
vergence.

In this paper, the combination of both approaches
is considered in the proposed framework of piecewise
smooth differential algebraic equations (PWS DAEs).

2 Piecewise Smooth Differential
Algebraic Equations

We consider DAEs of the semi-explicit form

ẋ = z,
0 = g(x,y,z,u,v,w,min(u,v),ϕ(w)), (1)

where x are the dynamic variables and y, z, u, v, w
are the algebraic variables, g is a smooth function,
min(u,v) is the element-wise continuous piecewise
defined minimum value operator

min(ui,vi) =

{
ui, ui ≤ vi,

vi, ui > vi,
(2)

and ϕ(w) is the element-wise discontinuous step func-
tion

ϕ(wi) ∈


{0}, wi < 0,
{0,1}, wi = 0,
{1}, wi > 0.

(3)

Following the ideas of [4], the introduction of the
minimum value operator allows to model almost any
continuous piecewise smooth function. The discontin-
uous step operator is introduced to enable the model-
ing of controlled switches.

Compared to classical piecewise smooth dynam-
ical systems and ODEs with a discontinuous right
hand side [1,3], the circuit DAE equations do not have
to be reformed to an ODE representation. Compared
to hybrid DAEs [8], the possible transitions between
modes do not have to be enumerated. Compared to
switched DAEs [6], the switch instants are implic-
itly determined and do not have to be known in ad-
vance. The full paper will discuss local solutions in
the sense of Carathéodory, and continuous and dis-
continuous boundary crossings of the non-smooth op-
erator modes. One of the associated difficulties is that
the DAE index structure can change at such boundary
crossings. Some examples are shown in Fig. 1.

3 Solution Approach

The numerical solution approach, to be discussed in
the full paper, follows the block diagram of Fig. 2. At
each boundary crossing of a discontinuous step op-
erator, a new valid mode for all non-smooth opera-
tors must be determined and the algebraic variables
must be reinitialized. This mode-selection and reini-
tialization problem involves solving static subsystems
of piecewise smooth continuous equations, for which
piecewise linearization techniques are explored [4].
The discontinuous operators are assumed to posses
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Fig. 1: Examples of PWS DAEs with forbidden region
F̂ . There is a unique local solution for x0 = xa in (a),
no solution for x0 = xa in (b), and two local solutions
for x0 = xa in (c).

a specific structure so that they can be resolved se-
quentially. Once a valid operating mode is found, the
equations can be solved as a regular smooth DAE
with a numerical integration method until a boundary
crossing event is encountered. An example solution is
shown in Fig. 3.
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Fig. 2: Flowchart of the solution approach
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Summary. Yield of an Integrated Circuit (IC) is commonly
expressed as the fraction (in %) of working chips over
all manufactured chips and often interpreted as the failure
probability of its analog blocks. We consider the Impor-
tance Sampling Monte Carlo (ISMC) as a reference method
for estimating tail probabilities. For situations where only
a limited number of simulations is allowed, ISMC remains
unattractive. In this case, we propose an unbiased hybrid
Monte Carlo approach that provides a fast estimation of the
probability. Hereby we use a combination of a surrogate
model, ISMC technique and the stratified sampling.

Keywords: IC Design, Yield, Rare Events, Monte Carlo,
Surrogate Model, Importance Sampling, Stratification

1 Introduction

Yield of an Integrated Circuit (IC) is commonly ex-
pressed as the fraction (in %) of working chips over
all manufactured chips and often interpreted as the
failure probability of its analog blocks such as mem-
ory bitcells, standard cells and analog IPs. To ensure
a circuit will not degrade the yield of the IC, very low
failure probabilities of pfail = 10−10 are needed.

When we estimate the probability of failure, it is
done with some fixed environmental parameters (such
as temperature, supply voltage and process corners).
They can cause a lot of complexity. For instance, the
failure probability must be computed for a large range
of working temperatures. The complexity grows ex-
ponentially when the other dimensions are combined.
For complex systems one usually can only afford a
limited number (say, hundreds) of simulations, and
therefore standard Monte Carlo (MC) method is not
directly applicable and a variance reduction Impor-
tance Sampling (IS) technique remains unattractive.
Then an effective hybrid ISMC (HISMC) approach
is introduced in [3]. Here we propose an Unbiased-
HISMC (UHISMC) approach which is identical to
HISMC in the exploration but different in the esti-
mation phase where we use the controlled stratified
sampling as in [2].

2 Importance Sampling MC Technique

Let X ∈ Rd be the input vector of the circuit under
study and x a realization of X, with probability den-
sity function g(x), and let H(X) be the correspond-
ing response of the circuit. In importance sampling
(IS) we sample from another distribution (from which
the rare-events are generated) rather than the origi-
nal. Let gθθθ (x) be the IS density function parameter-
ized by its mean θθθ ∈ Rd . Then the failure probability
pfail = P(H(X)≥ γ) of the circuit is defined as

pfail = Eg
[
1(H(X)≥γ)

]
=
∫
1(H(x)≥γ)g(x)dx (1)

=
∫
1(H(x)≥γ)

g(x)
gθθθ (x)

gθθθ (x)dx

= Egθθθ

[
1(H(Xθθθ )≥γ)

g(Xθθθ )

gθθθ (Xθθθ )

]
where subscript g means that the expectation is taken
with respect to the pdf g(x), γ is a given failure thresh-
old and 1{H(X)≥γ} is an indicator function being 1 if
H(X)≥ γ , 0 otherwise.

Assuming g(x) is standard Gaussian, we use gθθθ (x)=
g(x− θθθ) as in [1]. Then, the ISMC estimator of (1)
can be computed by

p̂IS
fail =

1
N

N

∑
j=1

J(X j) (2)

where J(X) = 1(H(X+θθθ)≥γ) e−θθθX− |θθθ |
2

2 , X j’s are N in-
dependent and identically random vectors distributed
from the density g(x) and θθθ is unknown but that can
be estimated by minimizing the variance Vargθθθ [J(X)].
For details we refer to [1, 3, 4].

3 Unbiased Hybrid Importance
Sampling Monte Carlo Approach

In this section we propose a surrogate-based UHISMC
approach. We use the IS technique and split it into
two phases, the exploration and the estimation phase.
In the exploration phase we estimate the mean-shift
θθθ by using a surrogate-based multi-level mean-shift
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approach. For details, see [3, 4]. In the estimation
phase we estimate the failure probability pfail with the
known θθθ (from exploration phase). Moreover, we use
a so called controlled stratified sampling (CSS) tech-
nique proposed in [2].

We partition the input space Rd into I mutually
exclusive and exhaustive regions D1, . . . ,DI called
strata. To use stratified sampling we must know how
to sample in each Di. To this end we use a surrogate
model to find the strata Di = {X : ĥρi−1 < Ĥ(X) ≤
ĥρi} where Ĥ(X) is a surrogate prediction and ĥρi−1

and ĥρi are quantiles Ĥ(X) computed for 0 ≤ ρi−1 <
ρi < 1. Further, we sample in each stratum using an
accept/reject criterion. The rough idea is to gener-
ate many realizations of a r.v. X ∼ g(x), to evalu-
ate the corresponding surrogate responses Ĥ(X∗) and
to accept/reject the realizations depending on the re-
sponses Ĥ(X∗). The simulator response H(X∗) is then
computed with the accepted realizations.

Let N be the total number of simulations from the
simulator. We fix an allocation N1, . . . ,Nm of positive
integers with ∑

m
i=1 Ni =N. For each stratum i, we gen-

erate many realizations of the r.v. X ∼ g(x) and ac-
cept Ni realizations

(
X(i)

j

)
j=1,...,N j

among them such

that the model predictions Ĥ
(

X(i)
j +θθθ

)
lie in the in-

terval (hρi−1 ,hρ j ]. The true response H
(

X(i)
j +θθθ

)
is

computed for the accepted realizations. The condi-
tional probability Pi =

{
Eg

[
J(X(i))

]
: X(i) ∈ Di

}
is

estimated for each i:

P̂i =
1
Ni

Ni

∑
j=1

J(X(i)
j ) (3a)

with the conditional variance of P̂i

Var(P̂i) =
Var
(

J(X(i)
j )
)

Ni
=

σ2
i

Ni
(3b)

Finally, the Importance Sampling Controlled Strat-
ified (ISCS) probability estimator of pfail is given by:

p̂ISCS
fail =

m

∑
i=1

wiP̂i (4)

with wi = P(X ∈ Di). For an optimal mean-shift
θθθ , the estimator p̂ISCS

fail is unbiased and follows the cen-
tral limit theorem.

4 Results

Here, we present the results of a realistic circuit “VCO”
with 1500 stochastic input parameters and scalar re-
sponse ‘oscillation frequency’. Our goal is to esti-
mate the probability for the oscillation frequency to
be larger than the given threshold γ = 1900.

Table 1. VCO: ISMC Versus HISMC Probability Estima-
tion

Method p̂fail CV(%) MSE #Runs
ISMC 1.10×10−10 8.14 2.34×10−23 12000

UHISMC 1.09×10−10 6.16 1.47×10−23 2978

In Table 1, we compare the results for ISMC
and UHISMC. ‘p̂fail’, ‘CV’ and ‘#Runs’ are the esti-
mated probability, coefficient of variation and num-
ber of runs. They are the average of 100 experi-
ments of per method. ‘MSE’ is the mean squared error(
∑

100
i=1(p̂faili− p̂ref

fail)
2
)

where p̂ref
fail refers to a reference

probability computed with ISMC for a very small co-
efficient of variation. The efficiency of the UHISMC
method with respect to the ISMC is computed as

Eff(ISMC,UHISMC) =
(MSE×#Runs) in ISMC

(MSE×#Runs) in UHISMC

=
2.34×10−23×12000
1.47×10−23×2978

≈ 7

So, ISMC requires about 7 times more simulations
than UHISMC to achieve the same accuracy. Thus,
UHISMC is preferred.

5 Conclusion

From the results above we can conclude that UHISMC
is more efficient than ISMC. Moreover, UHISMC
provides an unbiased estimator and follows the cen-
tral limit theorem. Thus UHISMC is preferred over
ISMC.
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ficient yield estimation through generalized importance
sampling with application to NBL-assisted SRAM bit-
cells. Proceedings of the 35th International Conference
on Computer-Aided Design, Article No. 89, 2016.

2. C. Cannamela, J. Garnier and B. Iooss. Controlled Strat-
ification for Quantile Estimation. The Annals of Aplied
Statistics, 2(4):1554–580, 2008.

3. A.K. Tyagi, X.Jonsson, T.G.J. Beelen and W.H.A.
Schilders. Hybrid Importance Sampling Monte Carlo
Approach for Yield Estimation in Circuit Design. Sub-
mitted to the Journal of Mathematics in Industry,
(Springer Open), January 2, 2018.

4. A.K. Tyagi, X.Jonsson, T.G.J. Beelen and W.H.A.
Schilders. Speeding Up Rare Event Simulations Using
Kriging Models. In Proceedings of IEEE 21st Workshop
on Signal and Power Integrity (SPI), IEEE, 2017.

76



Electromagnetic stimulation chambers for cartilage regeneration
Julius Zimmermann and Ursula van Rienen

Institute of General Electrical Engineering, University of Rostock, A.-Einstein-Str. 2, D-18059 Rostock
julius.zimmermann@uni-rostock.de, ursula.van-rienen@uni-rostock.de

Summary. Electromagnetic (EM) stimulation has been
identified as a tool to enhance cartilage regeneration. It is
a major goal to understand the influence of the applied EM
fields on the cartilage cells, i.e. chondrocytes. We present
ideas to compute the EM fields inside commonly used stim-
ulation chambers and cells embedded in those chambers to
shed light on the mechanisms leading to cell growth and
eventually cartilage regeneration.

1 Introduction

In an ageing society, many people suffer from weak
hyaline cartilage. Eventually, it leads to osteoarthri-
tis, which is a painful disease. In the last years, the
treatment of weakened cartilage tissue by electromag-
netic fields awoke interest [8]. In general, there exist
two options for tissue stimulation: direct stimulation,
where the electrodes are in contact with the tissue, and
capacitive coupling, where the electrodes are insu-
lated. For the sake of biocompatibility, capacitive cou-
pling is currently favored by medical researchers as
no electrochemical reactions appear at the electrodes.
Since the biological processes are mainly driven by
the cells that maintain the tissue, the effect of the EM
fields on them needs to be elucidated.

2 Theory

In case of low-frequency fields with negligible mag-
netic induction, the time-harmonic fields can be cal-
culated by using the electro-quasistatic (EQS) ap-
proximation of Maxwell’s equations. Since the EQS
field is curl-free it may be determined from the Laplace
equation via the scalar potential Φ :

∇((iωε(r,ω)+σ(r,ω))∇Φ(r)) = 0 , (1)

where ω is the angular frequency, ε the permittiv-
ity and σ the conductivity. In general, the dielec-
tric parameters ε and σ are material- and frequency-
dependent properties. Since data for chondrocytes
from the hyaline articular cartilage does not exist,
the parameters for costal chondrocytes were taken
from [6] and the frequency dependence was neglected
in this preliminary study. The parameters are summa-
rized in Table 1.

It has been shown that for cells the electric be-
haviour of the membrane can be described by the so-
called impedance boundary condition [5]. In this case,
the current density in the membrane consists only of
the normal component, which is given by

jn =
(σm + iωεmε0)∆Φ

dm
, (2)

where σm is the membrane conductivity, εm is its per-
mittivity, ∆Φ is the potential difference of its outer
and inner surface and dm is its thickness.

Table 1. Dielectric parameters for costal chondrocytes [6]
and capacitively-coupled chamber [7].

medium membrane cytoplasm

εr 80 59.05 60
σ [Sm−1] 1.5 6.895 ·10−5 0.16

3 Geometries and Modelling

An exemplary stimulation chamber is depicted in Fig. 1.
This geometry can be fully discretized including a
membrane of 5nm, as described in [7]. For that, we
used COMSOL Multiphysics (Version 5.3). By ex-
ploiting (2), the number of degrees of freedom can
be reduced from 2,176,318 to 26,933. However, the
usage of the boundary conditions turns out to be only
justified if the conductivity of the membrane is large
in comparison to that of the electrode’s dielectric
coating and small to that of the bulk medium.

Fig. 1. Typical set up for a capacitive-coupling stimulation
chamber [7].
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4 Results

As a first approach, the study of Taghian et al. [7]
was adapted. After introducing the parameters mea-
sured for chondrocytes, the observed induced mem-
brane potential was remarkably different from the val-
ues previously reported. A main reason is that in com-
parison to [7] a non-zero membrane conductivity is
imposed, which has a crucial effect (see Fig. 2). For
low or even zero membrane conductivity a potential
difference is already induced at low frequencies [7].
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Fig. 2. Potential difference ∆Φ for various values of the
membrane conductivity σm for the chamber shown in Fig. 1.

In addition, a 3D model, where the cell is not
in close contact with the substrate, shows a simi-
lar behaviour. However, the induced potential differ-
ences are smaller than previously and increase only at
higher frequencies.
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Fig. 3. Potential difference ∆Φ at the membrane apex for
different values of σm for a spherical cell placed in a 3D
model of the chamber shown in Fig. 1.

The effect at 60kHz is of paramount interest as
this frequency has been used in experiments already [2].
Following [4], the power input can be estimated for a
5nm membrane to be around 48kWm−3 for the pa-
rameters given in Table 1. This yields a maximal tem-
perature increase in the membrane during a 60s treat-
ment of around 1.3K assuming thermal properties for
fat [3], building the major component of membranes,
and neglecting heat flow.

5 Discussion

The obtained results suggest that a potential differ-
ence along the cell membrane is induced from a cer-
tain frequency on, which depends on the membrane
conductivity as well as on the cell shape. With regard
to the low values (less than a mV), it is an open ques-
tion whether the induced membrane potential is suf-
ficient to trigger e.g. voltage-gated channels. Regard-
ing the long exposure times up to some hours [2], a
temperature increase in the cell membrane could be
crucial.

6 Outlook

The simulations will be applied on stimulation cham-
bers developed by cooperation partners in the CRC
1270 ELAINE. Moreover, multiphysics models in-
volving e.g. heat transfer are to be developed. The im-
plementation of an open-source solution that relies on
a SALOME - GMSH - FEniCS workflow for CAD,
meshing and solving (1) is planned [1].

Acknowledgement. This research was supported by the DFG
(German Research Foundation) Collaborative Research Cen-
tre 1270 ELAINE.
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Numerical determination of transmembrane voltage in-
duced on irregularly shaped cells. Ann Biomed Eng,
34(4):642–652, 2006.

6. M. W. Stacey, A. C. Sabuncu, and A. Beskok. Dielectric
characterization of costal cartilage chondrocytes. BBA -
General Subjects, 1840(1):146–152, 2014.

7. T. Taghian, D. A. Narmoneva, and A. B. Kogan. Modu-
lation of cell function by electric field: a high-resolution
analysis. J. Royal Soc. Interface, 12(107):20150153–
20150153, 2015.

8. G. Thrivikraman, S. K. Boda, and B. Basu. Unraveling
the mechanistic effects of electric field stimulation to-
wards directing stem cell fate and function: A tissue en-
gineering perspective. Biomaterials, 150:60–86, 2018.

78



Part IV

Abstracts of Poster Session

79



On a Bloch-type model with electron–phonon interactions: modeling
and numerical simulations
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Summary. In this work, we discuss how to take into ac-
count electron–phonon interactions in a Bloch type model
for the description of quantum dots. The model consists
in coupling an equation on the density matrix with a set
of equations on quantities called phonon-assisted densities,
one for each phonon mode. At a first look, the scattering
terms introduce a relaxation behaviour. After a description
of the model, we discuss how to discretize efficiently this
non-linear coupling in view of numerical simulations.

1 Bloch model

1.1 Quantum dot description

Quantum dots are usually described using electrons
and holes. As detailed in [1], we prefer a conduction
and valence electron description, where valence elec-
trons can be seen as an absence of holes in a valence
band. Due to the 3D confinement, energy levels are
quantized for each species of electrons and can be in-
dexed by integers. We denote respectively (εc

j ) j∈I c

and (εv
j ) j∈I v the conduction and valence energy lev-

els.
To describe the time evolution of the energy level

occupations, we define a global density matrix by

ρ =

(
ρc ρcv

ρvc ρv

)
.

ρc and ρv are respectively the conduction and valence
densities. Their diagonal terms, called populations,
are the occupation probabilities and their off-diagonal
terms, called coherences, describe the intra-band tran-
sitions. Finally, ρcv and ρvc = ρcv∗ (A∗ denoting the
Hermitian matrix of a matrix A) describe the inter-
band transitions.

The time-evolution of ρ can be driven by a free
electron Hamiltonian associated to electron level en-
ergies and the interaction with an electromagnetic
wave (see e.g. [1] for details):

ih̄∂tρ = [E0 +E ·M,ρ], (1)

where [A,B] denotes the commutator AB−BA, E0 =
diag({εc

j},{εv
j}), M is the dipolar moment matrix (a

matrix that can be expressed in terms of the wave
functions associated to each energy level) and E is a
time-dependent electric field.

To study the interaction of the quantum dot with
an electromagnetic field, equation (1) can be coupled
with Maxwell equations:

∂tE = c2 curlB−µ0c2J, (2)
∂tB = −curlE, (3)

B being the magnetic field, c the speed of light in free
space and µ0 the vacuum permeability. The coupling
is expressed via the current density J which is given
by

J = na Tr(M∂tρ)

where na is the quantum dot volume density.
Equation (1) is a Liouville equation and it con-

fers a certain number of properties to the solution that
have already been extensively studied in the literature.
Here, we focus on the addition of electron–phonon
(e–ph) interactions in such a model.

1.2 Electron–phonon Hamiltonian

As in [2] where the addition of Coulomb interactions
is discussed, the starting point is to use field quantifi-
cation to write an e–ph Hamiltonian. We write it in the
form Hc−ph+Hv−ph. It implies that e–ph interactions
cannot lead the electron to change species. In this
work, only polar coupling to optical phonons is con-
sidered since it usually leads to the fastest dynamics
in low excitation regime. The corresponding Frölich
interaction Hamiltonian is given by (see e.g. [4]):

Hc−ph=
∫

B
∑

α,α ′∈I c
Gc

q,α,α ′c
†
α

(
bq +b†

−q

)
cα ′dq (4)

Hv−ph=
∫

B
∑

α,α ′∈I v
Gv

q,α,α ′v
†
α

(
bq +b†

−q

)
vα ′dq (5)

c†
j and c j (resp. v†

j and v j) are creation and annihi-
lation operators for conduction (resp. valence) elec-
trons and b†

q and bq are those for phonons, where the
phonon mode q belongs to the Brillouin zone B of
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the underlying crystal. For e ∈ {c,v}, Ge
q is a matrix

whose coefficients are expressed in terms of the wave
functions associated to each energy level:

Ge
q,α,α ′ = Eq

∫
ψ

e∗
α (r)exp(iq · r)ψe

α ′(r)dr,

Eq being the Frölich constant [4] defined such that
Ge∗

q = Ge
−q. Finally, optical phonons are almost dis-

persionless and for simplicity a constant phonon en-
ergy Eq will be assumed in the sequel.

1.3 Phonon-assisted densities and time evolution

As in [3], we introduce phonon-assisted density ma-
trices

Sq =

(
Scc

q Scv
q

Svc
q Svv

q

)
where Se f

q,α,α ′ =
〈

f †
α ′bqeα

〉
, e, f ∈ {c,v}. Then, the

time evolution of the density matrix due to e–ph in-
teraction can be cast in a very compact form as

ih̄∂tρ|e−ph =
∫

B
[Gq,Sq +S∗−q]dq≡ P(S). (6)

where we have introduced the notations

Gq =

(
Gc

q 0
0 Gv

q

)
and S = {Sq, q ∈B}.

P(S)∗ = −P(S) independently of the structure of S.
Therefore ρ , which is initially Hermitian, remains
Hermitian through time evolution via (6). This equa-
tion is also trace preserving since the right-hand side
is a combination of trace-free commutators.

To close the system, we now look for the time evo-
lution of phonon-assisted densities. After making ex-
plicit the commutators between the e–ph interaction
Hamiltonian and other Hamiltonians involved in the
system and using the Wick theorem to approximate
the means involving four operators, we finally obtain,
for each q ∈B, the following equation

ih̄∂tSq|e−ph = EqSq +
1
2
{G∗q,ρ}+(

1
2
+nq)[G∗q,ρ]

+C(ρ,G∗q)≡ EqSq +Q(ρ). (7)

{A,B} denotes the skew-commutator AB+BA, nq is
the phonon density expressed in terms of the phonon
energy Eq by the Bose–Einstein statistics, and C(ρ,G∗q)
is a non-linear term expressed as

C(ρ,G∗q) =−ρ̃G∗qρ̃ +Tr(G∗qρ̃)ρ̃

where ρ̃ = ρ

(
Ic 0
0 −Iv

)
, Ic and Iv being the identity

matrices for the conduction and valence spaces.
To summarize, introducing the e–ph interaction in

the Bloch equation (1) leads to the system

ih̄∂tρ = [E0 +E ·M,ρ]+P(S), (8)
ih̄∂tSq = EqSq +[E0 +E ·M,Sq]+Q(ρ). (9)

2 Numerical simulations

For simulations, we consider a collection of quantum
dots which are scattered in a one dimensional space
and interact not directly but through the interaction
with the electromagnetic field. So, densities depend
on time and space and the e–ph Bloch model (8-9) is
coupled with Maxwell equations (2-3).

First, we introduce a discretization of phonon mo-
des using Nq points. The integral over q in (6) is
approximated by a simple quadrature formula and
consequently the global phonon-assisted density S is
computed solving Nq independent equations (9).

A finite difference Yee scheme is used for Maxwell
equations. Equations (8-9) are discretized working on
a staggered grid in time and each equation is solved
using a Strang splitting procedure. For instance, the
three different terms in the right hand side of (9) are
solved separately. Each term is computed exactly us-
ing matrix exponential formulas. The advantage of
this splitting is that it numerically preserves positive-
ness for each equation.

Fig. 1. Time evolution of populations for a three energy
level case (Left: without e-ph; Right: with e-ph (Nq = 100)).

As preliminary result, we present in Fig.1 a three-
level test case with a single conduction level and two
valence levels (see Fig.1(b) in [2] for more details).
An electromagnetic pulse propagates to the dots. Its
center frequency ω0 corresponds to the energy be-
tween the conduction level and the first valence level
whereas the two valence levels are far apart enough
(transition energy equal to 2h̄ω0). A consequence is
that a Self-Induced Transparency (SIT) is observed
without e-ph interactions (left picture). For that case,
e-ph interactions destroy the SIT phenomenon (right
picture).
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Summary. This contribution is devoted to a discussion of
recent developments in the field of ensemble optimal con-
trol problems, which were originally proposed by R.W.
Brockett with the aim to construct a general and robust con-
trol framework that applies to problems involving a large
number of identical subsystems such as multiple spin sys-
tems in NMR, multi-particle systems, flocks, and multi-
agent models. Applications with mass transportation prob-
lems, queueing problems, and pedestrian avoidance prob-
lems are presented.

1 Ensemble optimal control problems

The formulation and study of optimal control of en-
sembles governed by differential equations have been
recently proposed by R.W. Brockett [8, 10] with the
aim to construct a general and robust control frame-
work that applies to problems involving a large num-
ber of identical subsystems such as multiple spin sys-
tems in NMR, multi-particle systems, flocks, and multi-
agent models. However, this framework applies equally
well to control a single dynamical system with uncer-
tainty in the initial conditions that are only known in
the sense of a statistical distribution.

Central to the formulation of ensemble control
with deterministic evolving systems is the Liouville
equation, which is a linear hyperbolic partial differ-
ential equation. On the other hand, in the case of
Itō stochastic models, Brockett’s ensemble control re-
quires to consider Fokker-Planck equations, which are
parabolic convection-diffusion equations.

In both cases, ensemble optimal control problems
consider cost functionals that include tracking of en-
sembles and different control costs that are motivated
by different modelling requirements.

1.1 The deterministic case

In order to illustrate the formulation of ensemble con-
trol, in the case of deterministic evolution models,
consider the following optimal control problem

min j(x,u) :=
∫ T

0
(θ(x(t))+κ(u(t)))dt +ϕ(x(T ))

(1)

s.t. ẋ(t) = a(t,x(t);u(t)), x(0) = x0, (2)

where ‘s.t.’ stands for ‘subject to’, and θ , κ and ϕ are
continuous convex functions of their arguments. The
optimal control function u is sought in the following
set of admissible controls

Uad :=
{

u ∈ L∞(0,T )
∣∣ ua ≤ u(t) ≤ ub a.e. [0,T ]

}
.

In this problem, a(t,x;u) denotes the controlled dy-
namics and x represents the state of the system. The
purpose of the control is to minimize a function of the
state trajectory given in terms of θ , while putting min-
imal effort by minimizing the costs given in terms of
κ .

Now, in order to strike a balance between the de-
sired performance of the system and the cost of im-
plementing an effective control, the ensemble con-
trol strategy considers a density of initial conditions,
and therefore ensemble of trajectories, with the aim
to achieve robustness, while choosing control costs
that promote control functions that allow easier im-
plementation. This approach leads to the formulation
of the following ensemble optimal control problem

min
u∈Uad

J(ρ,u) :=
∫ T

0

∫
Rd

θ(x)ρ(x, t)dxdt

+
∫
Rd

ϕ(x)ρ(x,T )dx+
∫ T

0
κ(u(t))dt

(3)

s.t. ∂tρ +div
(
a(t,x;u)ρ

)
= 0, ρ|t=0 = ρ0.

(4)

In this formulation, the initial density ρ0 ≥ 0 repre-
sents the probability distribution of the initial condi-
tion x0 in (1) - (2), and thus it models the known un-
certainty on the initial data. Alternatively, ρ0 repre-
sents the material density distribution at t = 0. Then
the solution to the Liouville equation (4), denoted
with ρ , represents the probability density function of
the system’s trajectory or the evolving material den-
sity, respectively.

2 Review of work

The notion of Liouville-based ensemble control was
proposed by R.W. Brockett in [8], and further de-
veloped in [9, 10], while considering the problem of
trade-off between the complexity of implementing a
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control strategy and the performance of the control
system. On the other hand and independently, it has
been recognized that the framework of optimal con-
trol of Liouville models is natural to investigate trans-
portation problems. In this case, we refer to the work
of [15] and [16]. Ensemble control has similarity with
stochastic control problems, and in this case more re-
sults are available starting from [2]. In this case, the
system’s trajectories are stochastic, and depending on
the class of stochastic processes, different Fokker-
Planck equations (replacing the Liouville equation
(4)) represent the evolution model of the probability
density function of the process. For Itō processes, we
refer to, e.g., [3, 4], and to [11, 17] for transport ap-
plication. In the case where the Itō process is also
subject to jumps see [14]. For piecewise-deterministic
Markov processes, we refer to [5, 19]. A case with
subdiffusion dynamics is discussed in [6].

We remark that the study of ensemble control
in [7] has shown a connection between optimal con-
trol of Fokker-Planck equations with suitably choosen
ensemble cost functionals and the Hamilton-Jacobi-
Bellman control framework.

3 Ongoing research

The research on ensemble optimal control problems
is very active and focuses on different theoretical
and numerical issues concerning the governing mod-
els and the structure of the optimal control prob-
lems. In the case of (3) - (4), one has to deal with
the theory of Liouville equations with variable coef-
ficients and even discontinuous (bang-bang) control
functions. This study relies on the fundamental works
[1] and [13] and many others. From the optimization
point of view, one has to deal with recent develop-
ments in optimal control theory with non-smooth cost
functionals; see [12] and references therein. Further,
the ensemble control approach can successfully ac-
commodate problems of crowd modelling as in [17]
and avoidance as in [18] where a Fokker-Planck Nash
game is considered.

Acknowledgement. This work was supported by the Na-
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Summary. This work is devoted to make a full analysis
of a generalized family of third-order partial differential
equations from the point of view of symmetry reductions.
The class considered broadens out many other well-known
equations as the KdV equation, the Burgers equation or the
Gardner equation. The use of solvable symmetry algebras
allow us to reduce this class to first-order nonlinear ODEs.
Furthermore, symmetry groups are used to determine a re-
duction of the class to a quadrature. Finally, exact solutions
are obtained.

The study of integrable equations which model
real-world phenomena have drawn the attention of
numerous researchers in the last years. Nevertheless,
in the early period of development of integrability
theory, most of the PDEs considered were constant-
coefficient ones. The issue lies in the fact that variable-
coefficient models describe nonlinear phenomena more
realistically that constant-coefficient models.

Gandarias and Bruzón [4] considered the gene-
ralized third-order variable-coefficient equation given
by

ut = (g(u))xxx +( f (u))x , (1)

where f (u) and g(u) are arbitrary functions satisfying
fu 6= 0, gu 6= 0. They obtained the point symmetries
admitted by equation (1). Moreover, they determined
the subclasses of family (1) which are self-adjoint and
quasi self-adjoint. Then, by using a general theorem
on conservation laws which does not require the exis-
tence of a classical Lagrangian, they found conserva-
tion laws for some equations belonging to class (1).

In this work, we consider a generalization of equa-
tion (1) which is given by

ut = (g(u))xxx +( f (u))x +h(u)uxx, (2)

where h(u) is an arbitrary function of u. This class
generalizes many well-known equations as the Korteweg-
de Vries equation, the Burgers equation and the Gard-
ner equation, among others.

The symmetry group of a partial differential equa-
tion (PDE) is the largest transformation group which

acts on dependent and independent variables of the
equation in a manner that it maps solutions of the
equation into other solutions. Symmetry groups have
several well-known applications. Among them, we
highlight local symmetries admitted by a PDE are
useful for obtaining invariant solutions [2, 5]. The
fundamental basis of this technique is that, when a
differential equation is invariant under a Lie group
of transformations, a reduction transformation exists.
Furthermore, symmetry groups can also be used to
determine conservation laws, obtain exact solutions
or the construction of maps between equivalent equa-
tions of the same family [1, 3, 6–8].

For equation (2), a one-parameter Lie group of
transformations is a transformation depending on the
parameter ε

t̂(t,x,u;ε) = t + ε τ(t,x,u)+O(ε2),
x̂(t,x,u;ε) = x+ ε ξ (t,x,u)+O(ε2),
û(t,x,u;ε) = u+ ε η(t,x,u)+O(ε2),

(3)

such that its third extension leaves equation (2) invari-
ant [6].

The Lie group of transformations is known when
the components τ(t,x,u), ξ (t,x,u), and η(t,x,u) are
determined. These components are also the coordi-
nates of the infinitesimal symmetry generator.

By using infinitesimal symmetries, it is well known
that a PDE with two independent variables can be
reduced to an ordinary differential equation (ODE).
This reduction procedure can be performed taking
into account the characteristic system

dt
τ

=
dx
ξ

=
du
η
.

The solutions of the characteristic system provide a
similarity variable z, and a similarity solution h(z). By
substituting these new variables into equation (2) we
obtain a third-order nonlinear ODE for h(z).

However, it is not always evident how to solve
the ODEs obtained. In fact, not all third-order non-
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linear ODEs can be solved in explicit form. One al-
ternative is to prove if the third-order nonlinear ODE
inherits a three-dimensional solvable Lie group from
equation (2). In this way, equation (2) can be reduced
to quadrature. We recall that the necessary condition
for equation (2) can be reduced to quadrature is that
the initial reduction comes from a point symmetry
belonging to a four-dimensional solvable Lie group.
Following reference [1], A k is a k-dimensional sol-
vable Lie algebra if there exists a chain of subalge-
bras A (1) ⊂A (2) ⊂ . . .⊂A (k−1) ⊂A (k) =A k, with
A (m) a m-dimensional Lie algebra, being A (m−1) an
ideal of A (m), m = 1,2, . . . ,k. An equivalent formu-
lation of this result more fitting for reducing diffe-
rential equations using symmetries is A ⊃ A (1) ⊃
A (2) ⊃ . . . ⊃ A (k) ⊃ A (k+1) = 0, where A (m) =[
A (m−1),A (m−1)

]
, m = 1,2, . . . ,k ≤ dim A .

In this work, we will perform a classification of
the point symmetries admitted by equation (2). Then,
we will determine the most general symmetry Lie
algebra that the equation admits depending on the
form of the arbitrary functions f (u), g(u) and h(u).
From the maximal Lie algebras, we will determine the
three and four-dimensional solvable symmetry alge-
bras of equation (2). This allows us to transform the
third-order nonlinear PDE (2) into first-order nonli-
near ODEs. Furthermore, in some cases it is possible
to obtain exact group-invariant solutions by using the
solvable symmetry groups which yields a reduction
of equation (2) to a quadrature. Finally, we will show
exact solutions of equation (2).
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Particles with sizes that range from sub-micrometers to about 1 millimeter and with particular elec-
trical and/or magnetic properties, experience mechanical forces and torques when they are subjected to
electromagnetic fields (this type of particles are called “electromechanical particles”).

The theoretical study of this large class of complex systems is possible thanks to the development
of real-system models and numerical simulations of the stable (multi-particle) configurations and their
dynamics.

One of the phenomena that affect electromechanical particles is the dielectrophoresis (DEP)[1, 2].
A branch of emerging application relates to controlled manipulation of particles dispersed in colloidal

solutions (i.e. biological particles such as cells or DNA), since the strong selectivity of the response
depends on the particle volume, shape and composition [3]. Application fields of dielectrophoresis include
cell partitioning/isolation for the capture/separations without the use of biomarkers [4].

This contribution focuses on the theoretical study of the dynamics of micro-sized spherical biological
particles suspended in a colloidal solution, which are subjected to dielectrophoresis in the presence of
non-homogeneous and non-uniform variable electric fields.

Most DEP models in the literature are based on particles in the diluted solution limit [5]; in this
case the forces are calculated using an approximate method (standard DEP). The electric field is applied
through the electrodes present in a microfluidic channel in which the colloidal solution flows. Particle
manipulation and characterization using DEP is generally performed in a confined region near the elec-
trodes, so that the interaction between the particle and the surrounding walls can be significant. In this
work, we present numerical simulations of the movement of MDA-MB-231 tumor cells near electrodes
edges; we run a more detailed study, with a non-approximate calculation of the dielectrophoretic force:
DEP forces are estimated by integrating the Maxwell tensor [6]; it leads to an overall DEP force inde-
pendent of the complex dielectric permittivity of the particles and suspending medium and depends only
on the type of boundaries (conductive or isolating) and on the ratio between the particle and electrode
dimensions.

The dynamics is simulated by techniques borrowed from Molecular Dynamics (MD): our goal is to
first evaluate the forces acting on electromechanical particles starting from the initial configuration of
the system (position of the particles, geometry of the electrodes, electrical potentials applied), and then
calculate the dynamics of the particles through the integration of the equations of motion using MD-
like techniques. The Coupled MD-FEM study of particles’ kinetics consists of a loop with the following
steps: initial positions of the particles; calculation of forces; calculation of acceleration; integration of the
equations of motion; new positions. We use the numerical integration technique called Verlet Method.
The coupled MD-FEM algorithm and its implementation in the FEniCS environment are presented.
Realistic simulated cases will be discussed, showing also the difficulties of the methodic implementation
in 3D domains.

We carry out simulations of the movement of MDA-MB-231 tumor cells near the electrode edges,
based both on the standard DEP theory and on the non approximate theoretical model (MST). We
find that, in the case of standard DEP, the cells experience an attractive force that traps them near
the electrodes, while in the case of the MST-DEP force, the cells also form chains due to dipole-dipole
interactions and some escape from the attraction of the electrodes.

Our work shows the potential of coupled MD-FEM study of electromechanical particles.
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Figure 1: Self consistent solution of the complex Poisson equation
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Figure 2: MST-DEP configuration after 0.6s of simulated evolution. In the presence of the DEP force
calculated by the Maxwell Stress Tensor, the cells are attracted by the electrodes and form chains due to
dipole-dipole interactions; some cells escape the attraction of the electrodes.
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Summary. The main motivation of this work is lying in the
acceleration of transient simulation of Analog Mixed Signal
circuits. As in the electronics industry, smaller and faster
electronic devices have been always demanded, leading to
challenging problems in the Electronic Design Automation
industry. Full device-parasitic transient simulations of real-
istic circuits are time consuming or even infeasible due to
a huge number of electrical devices and unavoidable para-
sitics. In this paper, we introduce a novel technique to ad-
dress the problem. The technique activates/inactives cou-
pling capacitances at each time step, therefore, giving faster
transient simulation.

? Resistors, coupling capacitors

1 Introduction

Very Large Scale Integrated circuits contain numer-
ous tiny electronic devices placed in a small flat piece
of semiconductor material. In every new generation,
smaller-size transistors and denser electronic devices
significantly cause parasitic electromagnetic effects
in transistors and interconnects to be more apparent.
Simulation of such parasitic networks is too costly
or unattainable. With the purpose of speedup and
(or) enabling transient simulation of AMS1 circuits,
reduced models are sought for the parasitics. Well-
known MOR2methods to deal with these large net-
works are Krylov subspaces [4], balanced truncation
methods [8], and elimination methods [6]. However,
existing MOR methods can produce dense reduced
models that become more expensive to simulate than
the original systems. Moreover, for multi-terminal
networks MOR is inefficient because of generating
dense models such as when using PRIMA [4], and/or
large reduced models. Recently, ReduceR [7], SparseRC
[3] and TurboMOR-RC [5] are presented to share the
common goals: creating sparse reduced models and
working efficiently with multi-terminal networks. In
the present study, we work on an innovative method
where the sparsity, efficiency, and accuracy of the
method for multi-terminal networks are of great con-
cern.

In the new approach, for each time step of tran-
sient simulation coupling capacitors between nets are

1 Analog Mixed Signal
2 Model Order Reduction

selected to be active/inactive results in sparser capaci-
tance matrix in some time steps, thus providing faster
transient simulation. For some initial experiments, de-
scribed below, the method gives promising results.

2 Problem formulation and the method

Time-domain circuit simulation

The time-domain transient behaviour of a given cir-
cuit is described by the following formulation:

f(x) = Cx′(t)+Gx(t)+Hg(x(t))−Bu(t) = 0 (1)

where:

• MNA [1] matrices G,C ∈ RN×N are symmetric,
semi-positive definite, corresponding to the con-
ductivities and capacitances, respectively;

• x ∈ RN denotes the node voltages;
• u ∈ RM is the current or voltage source and B ∈

RN×M is the incidence matrix;
• g is a vector of nonlinear functions, and H is a

matrix with entries in 0,±1.

The nonlinear system of equations (1) is usually solved
for a given initial condition x(t0) := x0 where x0 is ob-
tained by solving the DC solution:

f0(x) = Gx+Hg(x)−Bu0 = 0. (2)

Equations (2) and (1) are solved numerically by us-
ing a nonlinear iterative method such as Newton′s
method. At each Newton iteration, a linearized prob-
lem is solved to update the approximation:

x(k+1) = x(k)−J−1
f f(x(k)), (3)

where RN×N 3 Jf =
∂ f
∂x

∣∣
x=x(k) is the Jacobian matrix

of f(x), Jg ∈ RN×N , and Jg(x(k)) = ∂g
∂x

∣∣
x=x(k) is the

Jacobian matrix of g(x).
For time domain simulation, from the initial condi-
tion the DAE system in (1) is discretized into a set
of nonlinear algebraic equations by a numerical inte-
gration method (Backward Euler, Trapezoidal). Then
iterative Newton′s algorithm is applied at each time
point ti and finally linear solvers are used to solve lin-
earized set of equations.
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Most of the computation at time is spent in assem-
bling the derivative matrix J(x(k)) and in solving sys-
tem with it [2]. Therefore, reducing sparsity of con-
tributed matrices of the system would help to acceler-
ate transient simulation.

The SelectC method

The current passing through a capacitor ci j between
Vi and Vj (direction Vi→Vj) is

ic = ci j×
d(Vi−Vj)

dt
(4)

≈ ci j×
(

Vi(tn+1)−Vi(tn)
tn+1− tn

−
Vj(tn+1)−Vj(tn)

tn+1− tn

)
.

(5)

When the current iC is negligible i.e. approximate to
0, then ci j is said to be inactive and can be removed
from the capacitance matrix.
In other words, SelectC is the method of selecting ac-
tive/inactive coupling capacitors based on the currents
going through them. The inactive capacitors are cou-
pling capacitors whose node voltages barely change
from the previous time step to the current one. At the
current time step, the active capacitances will be kept
while the inactive capacitances are removed from the
capacitance matrix of the system matrix. To make sure
the voltage derivative part is minor and the ic value
is not affected by the ci j value, the possibly inactive
capacitors ci j to be removed should have capacitance
smaller than to be chosen constant τcap. Eventually, a
capacitance is removed if ci j ≤ τcap

ci j×
(

Vi(tn+1)−Vi(tn)
tn+1− tn

−
Vj(tn+1)−Vj(tn)

tn+1− tn

)
≤ τsel

(6)
SelectC can be seen as eliminating small currents
passing through capacitors by eliminating capacitors,
thus reduces the number of capacitors. At a certain
time step, SelectC eliminates inactive capacitors, which
is essential for preserving accuracy.

Table 1. Numerical results of SelectC, removing ci j if ci j
meets (6)

Netlist τcap τsel Type Avg#C
Sim.

Error
Time (s)

1. N =
18,927

- - Orig. 168,309 619 -

1e-14
1e-8

SelectC 15,090 105 1.2e-03
Red. rate 91% 5.9X

1e-4
SelectC 17,756 88.5 6.1e-02
Red. rate 89.5% 7X

2. N =
6,887

- - Orig. 14,161 53 -

1e-14
1e-8

SelectC 2,102 23 6.2e-04
Red. rate 85% 2.3X

1e-4
SelectC 611 11.6 1.2e-01
Red. rate 94.7% 4.6X

3 Numerical results

We focus on SelectC applied to matrix C of the lin-
ear system Cx′+Gx = Bu(t), where G,C are large
industrially relevant matrices. The sparsity of the re-
sulting matrices greatly contributes to faster transient
simulation time, as can be seen in Table 1. SelectC
can reduce about 90% of average density of the orig-
inal C leading to faster transient simulation time up
to the factor of six (netlist 1). The error is accept-
able with maximum absolute error less than 2% for
τsel = 1e−8.

4 Conclusions and outlook

The new technique provides faster transient simula-
tions of RCc networks up to the factor of six. The
method works nicely with stable signals, for instance
trapezoidal, pulse and/or square signals. To be investi-
gated are the reliability and automatic detection/generation
of the method (more precisely, given an error toler-
ance, which value of τsel and τcap we should choose,
and vice versa).
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Summary. We present a computation tool developed for
the simulation of localized heating and eventual melting
processes. The code is designed to efficiently simulate 3D
structures with TCAD capabilities for the design of the sys-
tem. Thermal transport in critical regions (intermediate and
large Knudsen number) is ruled by advanced models (order
reductions of the Boltzmann transport equation) whilst in
regions with small Knudsen number is ruled by the con-
ventional Fourier law. Heating can be also evaluated by
means of self consistent solutions of the Maxwell equations
where optical constants are functions of the local average
phonons’ energy (temperature in quasi-equilibrium condi-
tions). A preliminary calibration is provided for given ma-
terials/phases. Applications of the simulations to realistic
cases will be discussed and compared with experimental
data in order to demonstrate the potentiality of the method.

1 Introduction

Ultra localized annealing techniques, using laser sources,
are necessary where heating processes need nanoscale
resolution for a plethora of applications in the nano-
technology field. In nano-electronics laser irradiation
is invoked as ideal heating technique for 3D vertical
integration. Indeed, due to its low in-depth thermal
diffusion, laser anneal is nowadays widely applied as
a post-fabrication annealing step to activate isolated
doped regions with a null or strongly reduced heating
of the other zones of the devices.

Anyhow, the application of such techniques is of-
ten hindered by the difficulties in the process control
and understanding. Indeed, LA process is highly in-
fluenced by the interaction between electromagnetic
(e.m.) field and complex device structures. In order
to correctly design processes and control experiments
accurate modelling is needed, especially when the ref-
erence systems are complex 3D systems made by ob-
jects with size in the nm range made of different ma-
terials.

Models of laser annealing process have been de-
veloped by our team for particular limited applica-
tions and implemented in academic or commercial
package [1–4]. However, several limitations remain
(see e.g. discussion in Ref. [5]) in the previous mod-
eling approach for the general application in future
devices, characterized by complex structures with nm

Fig. 1. Simulation example of the Laser Annealing process
in a FINFET device structure, from left to right the heat
sources, the phase (liquid phase in blue, solid one in red)
and temperature. Is also shown the mesh used. The corre-
lation between phase and heat source in the figure demon-
strates the role of self-consistency in the simulation.

wide elements made of different materials/phases. More-
over, for nanoscale size of the devices the process
conditions often fall in a regime where Fourier law is
questionable and the heat propagation should be stud-
ied and simulated in term of phonon transport.

2 Methods and computational tool

In the paper we present an extension of our tool for the
simulation of laser annealing process(named LIAB:
LASSE Innovation Application Booster) aiming to
consider correction to the Fourier law for phonon
mediated transport of irradiation energy. The origi-
nal LIAB solver simulates a complex self-consistent
problem in 1D, 2D and 3D systems, where the heating
is evaluated by mean of the time harmonic solution of
the Maxwell equations and the source term in the heat
equation is

Slaser(t,r) =
ε
′′

2ρ
|Et−h|2 (1)

Where ε
′′

is the imaginary part of the complex di-
electric constant ε

′′
= ε

′
+ jε

′′
of the material and

Et−h is the time harmonic electric field E = Et−h×
exp(− jωt+φ). The self consistency derives from the
dependence of the optical constant on the temperature
field (varying in the range 300-2000K), the phases
and the alloy fraction( see fig.1).

The main features of the LIAB package include
the following:
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• Versatile Graphical User Interface for the struc-
ture design, the material assignment and the sim-
ulation analysis;

• Interface with the FEniCS solver for the automatic
generation of the mesh and the runtime control;

• Many materials calibration (optical and thermal
properties and mass transport) as a function of
temperature and phases;

• Efficient coupling with Electromagnetic Simula-
tion for the self-consistent source estimate (i.e.
power dissipation) in nano-structured topographies;

• Experimental validation in nanostructured sam-
ples;

• Multiple-dopant models simulating dopant atoms
redistribution including diffusion solubility and
segregation;

• Alloy model e.g. SiGe (where melting point de-
pends on the alloy fraction);

• Multiple phases (e.g. amorphous, liquid, crystal).

In the LIAB extension we includes corrections
for the thermal transport in critical regions (character-
ized by intermediate and large Knudsen number). The
advanced models implemented in these regions are
based on order reductions of the Boltzmann transport
equation of the phonons, whilst in regions with small
Knudsen number is ruled by the conventional Fourier
law. Alternative numerical solutions of the full prob-
lem are presented where: a) Discontinuous Galerkin
method are applied for the full problem with a sin-
gle evolving average energy field or b) Continuous
Galerkin formulation is used for the the fields related
to the different orders of the corrections. In both case
jump like solutions appear at the boundaries between
materials and/or between thermostats and device.

Some application cases will be discussed in order
to demonstrate the potentiality of the package. Possi-
ble future extension will be outlined in the framework
of the development LIAB project.
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Summary. The finite element method presents severe lim-
itations when applied to geometries containing many thin
wires in magnetodynamic problems. We propose an inte-
gral formulation for an array of wires in a three-dimensional
magneto-quasi-static field able to reduce the computational
burden of finite element simulations.

1 Introduction

Magnetic and conductive wires are present in many
electrical engineering applications. For example, the
armor of a high voltage AC submarine cable is com-
posed of iron wires (Fig. 1).

When analyzing these problems by means of the
finite element method (FEM), it is necessary to dis-
cretize the wires into fine elements in order to con-
sider hysteresis and eddy current phenomena. More-
over, FEM requires to discretize not only the wires,
but also the air which surrounds them, and to intro-
duce an artificial boundary to the computational do-
main. For inherently 3D geometries that cannot be re-
duced to 2D, this requires the introduction of a large
number of degrees of freedom.

This paper proposes an alternative approach, based
on the magnetostatic method of moments (MoM) [1].
The advantages of this method are that only the mag-
netic material parts are discretized, and that there is
no need either to discretize the air domain, or to in-
troduce fictitious computational boundaries and asso-
ciated boundary conditions.

2 Method of Moments Formulation

For simplicity we present our formulation for the case
of a single wire. The extension to the case of multi-
ple wires is straightforward. We suppose that the wire
is made of a conductive and magnetizable material
of uniform conductivity σ and relative magnetic per-
meability µr. The wire has a length L and a circu-
lar cross-section of radius r and could be arbitrarily
curved in space. We denote by Γ (s), s ∈ [0,L] its cen-
terline and by Ω its volume.

We suppose that the wire is subject to a known
external magnetic field B0 = B0(x). As a first step we
suppose that B0 is a static field. The effect of B0 is to
magnetize the wire. The magnetization M along the
wire in turn produces a magnetic field BM , given by
[3]

BM(x;M)=
µ0

4π

∫
∂Ω

(n×M)(x′)× x−x′

|x−x′|3
da′. (1)

The total magnetostatic field B(x) at a generic
physical point x can thus be written as the sum of the
background field B0(x) and the reaction field BM(x;M)
produced by the wire magnetization:

B(x) = B0(x)+BM(x;M). (2)

To obtain an equation for the unknown magnetiza-
tion M we combine (2) with the constitutive equation
of the wire material. In the case of a linearly magneti-
zable material, it is given by [3]

M(x) =
1
µ0

(
1− 1

µr

)
B(x). (3)

Combining (2) with (3), we obtain the desired
equation for the unknown magnetization M

M(x)− α

µ0
BM(x;M) =

α

µ0
B0(x), (4)

where BM(x;M) is given by (1), and, for ease of no-
tation, we have put α = 1−1/µr.

The fundamental hypothesis that allows to sim-
plify (4) is that the wire is sufficiently thin. Under this
hypothesis, the background field B0 and the magneti-
zation M can vary appreciably along the wire, but are
almost constant over its cross-sections. Therefore the
values of these quantities over a cross-section Σ(s) are
approximately equal to the values at the center Γ (s)
of the cross-section.

We can then transform the surface integral equa-
tion (4) into a line integral equation

M(s)− α

µ0
BM(s;M) =

α

µ0
B0(s), s ∈ [0,L]. (5)
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Equation (5) represents a magnetostatic formula-
tion. We now extend the applicability of the formu-
lation to the case of a time-harmonic external field
B0(x, t) = B0(x)exp(iωt). An exp(iωt) time depen-
dence is assumed for the field quantities and sup-
pressed from now on.

An alternating magnetic field B0 besides magne-
tizing the wire as in the static case also induces an al-
ternating electric current J inside the conductive wire.

Thus, in the time-harmonic case an additional con-
tribution BJ(x) must be included into (2), obtaining

B(x) = B0(x)+BM(x;M)+BJ(x;J). (6)

Under the hypothesis that the wires are open-
circuit, the average of J over any cross-section is zero.
Therefore the volume current density J can be mod-
eled as a linear distribution of magnetic dipoles along
the centerline Γ of the wire. In other words, the effect
of the eddy currents J can be modeled as an additional
source of magnetization.

Therefore we can define an effective linear dis-
tribution of magnetization M∗(s) along the centerline
Γ , which takes into account both the magnetization
M, already analyzed in the static case, and the eddy
current density J. The magnetic field produced by M
and by J can thus be computed through (1), as long as
we substitute M with M∗.

So we can express the magnetic field B(x) at a
generic point x as a function of the line quantity
M∗(s):

B(x) = B0(x)+BM(x;M∗), (7)

with BM given by (1).
To obtain a line-integral formulation, it only re-

mains to specify the analogue of (3) for the time-
harmonic case. In [2] it is shown that the effective
magnetization M∗ is related to the magnetic field B
through

M∗(s) =
1
µ0

[K] (s)B(s), (8)

where [K] (s) is a tensor that takes into account the
different behavior of J in the direction parallel to the
wire and in the direction perpendicular to the wire re-
spectively.

Finally, combining (7) and (8), we obtain the equa-
tion for the effective magnetization M∗(s):

M∗(s)− 1
µ0

[K] (s)BM(s;M∗) =
1
µ0

[K] (s)B0(s).

(9)
Once (9) is solved, the computed M∗(s) can be

used in the post-processing phase to compute the
magnetic field B(x) at a generic physical point x by
means of (7).

3 Results and Conclusions

The proposed method is applied to the case of a
cable structure consisting of three helically twisted

lRc

2rw

Rw

2rc

c1

c2

c3

Fig. 1. Geometry for the test case: Rc = 57.8mm, Rw =
110mm, rc = 19.2mm, rw = 3.50mm, p = 3000mm.

conductors carrying a system of three-phase currents
of intensity I = 800A, and shielded by 95 closely
spaced cylindrical wires made of ferromagnetic ma-
terial (Fig. 1). The relative magnetic permeability of
the wires is µr = 300exp(−iπ/3) and their conduc-
tivity is σ = 4.808×106 S/m.

As it can be seen in Fig. 2, the results obtained
with the proposed method are in very good agreement
with the results of FEM simulations. The advantage of
the proposed method lies in the reduction in compu-
tational requirements, compared to FEM simulations,
both in terms of memory occupation and time of com-
putation.
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Fig. 2. Magnetic field intensity along line l (Fig. 1). Com-
parison between proposed method (MoM) and FEM.
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Summary. The finite element (FE) model of a non-
linear eddy-current problem is reduced by enrich-
ing the discrete interpolation method (DEIM) with
a gappy proper orthogonal decomposition (G-POD).
Particular attention is paid to robustness and stabil-
ity with an optimal computational cost.

Introduction

The finite element method (FEM) allows to accu-
rately model electromagnetic devices accounting
for eddy currents and nonlinearities. It may be
extremely expensive, though. The discrete empir-
ical interpolation (DEIM) [1] combined with the
proper orthogonal decomposition (POD) [2] can
provide a reduced-order model (ROM) which is
computationally efficient and stable for non-linear
magnetostatic problems [3].

In nonlinear magnetodynamic problems, the
DEIM-POD approach leads to instability, i.e. wrong
simulation results for particular choices of inter-
polants [3]. The gappy (G-) POD method [4] is
a POD variant that seems to ensure stability in
case of non-linear eddy current problems. An er-
ror indicator is proposed and analized in [5].

In this digest, we aim at comparing the DEIM-
POD and G-POD when reducing the FE model
of a single-phase power transformer.

1 MOR of a nonlinear
magnetodynamic problem

The FE element discretisation of the magnetody-
namic vector potential formulation with N basis
functions leads to the time-dependent system:

A∂tx(t) +B(x(t))x(t) = c(t) , (1)

with x ∈ RN×1 the unknowns, A and B ∈ RN×N
the coefficients, and c ∈ RN×1 the source. The
nonlinear material properties are embedded in
B(x). The time discretization of (1), with e.g. a
backward Euler scheme, reads

[A∆t +B(xk)]xk = A∆txk−1 + ck , (2)

with A∆t = A
∆t and ∆t = tk − tk−1 the time

step. Subscript k indicates the instant tk at which
the vectors are evaluated, e.g. xk = x(tk). The
solution of (2) can be obtained by means of a
Newton-Raphson scheme.

Proper Orthogonal Decomposition

Applying the POD to (2), we can write [2, 3]

[Ar∆t +Br(xrk)]xrk = Ar∆tx
r
k−1 + crk , (3)

with Ar∆t = ΨTA∆tΨ , Br(xrk) = ΨTB(Ψxrk)Ψ,
and crk = ΨT ck. Ψ is an orthonormal projec-
tion operator obtained by getting the SVD of the
snapshot matrix S = [x1, . . . , xL] = UΣVT and
truncating U , i.e. keeping the M first columns
that correspond to singular values in Σ larger
than a prescribed error ε, Ψ = Ur [6].

The solution vector xk is approximated by xrk
∈ RM×1 within a reduced subspace spanned by
Ψ ∈ RN×M , M � N , i.e. xk ≈ Ψxrk.

The nonlinear term in (3) reads

Br(xrk) = ΨT︸︷︷︸
M ×N

B(Ψxrk)︸ ︷︷ ︸
N ×N

Ψ︸︷︷︸
N ×M

. (4)

It requires the computationally expensive evalu-
ation of B(Ψxrk) as xrk is reprojected to the full
dimensional space.

Discrete Empirical Interpolation Method

The DEIM [1] allows approximating the term
B(Ψxrk)Ψxrk by means of an orthogonal projec-
tion operator W, which is generated by applying
the SVD to the nonlinear snapshot matrix Snl =
[B(x1)x1, . . . , B(xL)xL] = UnlΣnlVTnl, and select-
ing the De columns of Unl that correspond to er-
ror εnl, W = Urnl. A greedy algorithm [1] is then
used for selecting some interpolation indexes and
construct matrix P = [ep1 , . . . , epDe

] ∈ RN×De ,
where ej is the j-th column of the identity ma-
trix. The expensive term in (4) becomes

B(Ψxrk)Ψxrk ≈ W(PTW)−1PTB(PTΨxrk)Ψxrk.
(5)

Therefore, the reduced non-linear matrixBr(xrk)
can be approximated by
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Br(xrk) ≈ ΨTW(PTW)−1︸ ︷︷ ︸
M ×De

PTB(Ψxrk)Ψ︸ ︷︷ ︸
De ×M

, (6)

that does not depend on the full system order
N any more, as we need only De components to
evaluate the nonlinear matrix B.

Gappy Proper Orthogonal Decomposition

We propose a procedure similar to the G-
POD [4]. It consists in enriching the number of
selected DEIM components, P̃ = [ep1 , . . . , epDg

] ∈
RN×Dg , Dg > De, while keeping the original
DEIM operator W = UNL

r ∈ RN×De . The non-
linear term becomes

B(Ψxrk)Ψxrk ≈ W(P̃TW)†︸ ︷︷ ︸
N ×Dg

P̃TB(Ψxrk)︸ ︷︷ ︸
Dg ×N

Ψxrk . (7)

where the † denotes the pseudo-inverse. If Dg =
De, then we have just the DEIM approach. An
error indicator per instant tk can be introduced:

α = (P̃TW)†P̃TB(Ψxrk)Ψxrk. (8)

The norm of α should decrease for stability [5].

2 Single-phase power transformer

By way of illustration we consider a single-phase
power transformer in no load operation and with
sinusoidal current supply at the primary (5 A
peak, f = 50 Hz). The primary and secondary
copper coils (358 and 206 turns) are wound on
a nonlinear conducting core (σ = 3.72 103 S/m,

ν = 100 + 10e2|b|
2

m/H). Time-stepping simula-
tions are carried out with time step ∆t = T/60,
period T . We compare the DEIM-POD and G-
POD-POD results to the Full FE reference.

We construct the RO models from 85 time
steps (28 ms). The POD truncation for an error
of ε = 10−6 is M = 25. This POD set is used for
the DEIM with De = 25 and De = 30. The L2-
relative errors (%) with regard to the Full model
is acceptable for De = 25 but not for De = 30, see
Table 2. The result becomes clearly wrong when
increasing De, see joule losses in Fig. 1. This un-
expected behaviour corroborates the instability of
the approach. Note that |α| with De = 30 oscil-
lates and increases with the number of basis and
the number of TS, which indicates divergence.

Using the error indicator |α|, we select the
number of DEIM bases De to construct the G-
POD model. E.g., the joule loss curve in Fig. 1
diverges at 18 ms (54 TS) and for that number
of TS, |α| presents a minimum at De = 24. For
the sake of fair comparison, we take Dg = 30, so
that we have the same number we had with pure
DEIM. One observes that G-POD allows stabiliz-
ing the DEIM models.
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Fig. 1. Joule losses (up) and error indicator α (down)
for DEIM with 85 TS (28 ms), De = 30. Scale: blue
to yellow (initial to final TS).
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Table 1. L2-relative errors on the joule losses

DEIM G-POD
De L2-error % De Dg L2-error %

25 1.57 22 25 0.38

30 diverge 24 30 0.44
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Summary. We have developed a novel Monte Carlo (MC)
algorithm to solve the semiconductor Boltzmann equation
in the presence of electron-electron scattering (EES). It is
well known that the scattering operator for EES is nonlinear
in the single-particle distribution function. Numerical solu-
tion methods of the resulting nonlinear equation are usually
based on more or less severe approximations. In terms of the
pair distribution function, however, the scattering operator
is linear. We formulate a kinetic equation for the pair distri-
bution function and related MC algorithms for its numerical
solution. Assuming a spatially homogeneous system we de-
rived a two-particle MC algorithm for the stationary prob-
lem and an ensemble MC algorithm for the transient prob-
lem. Both algorithms were implemented and tested for bulk
silicon. As a transient problem we analyzed the mixing of
a hot and a cold carrier ensemble. The energy of the hot
ensemble relaxes faster with EES switched on. The cold en-
semble is temporarily heated by the energy transferred from
the hot ensemble. Switching on the electric field rapidly is
known to result in an velocity overshoot [1]. We observe
that EES enhances the overshoot. The stationary algorithm
was used to calculate the energy distribution functions at
different field strengths.

1 Introduction

It is commonly accepted that EES alters the high-
energy tail of the energy distribution function in a
semiconductor device [2]. Since physical models of
hot carrier degradation rely on accurate distribution
functions as an input it is important to model EES
carefully [4]. In this work we present results of a novel
treatment of EES that avoids several of the commonly
made approximations.

2 Theory

In the Boltzmann equation (BE), carrier-carrier scat-
tering is described by the following, nonlinear integral
operator.

Q[f ](k1, t) =

∫
dk′1 dk

′
2 dk2 S(k1,k2;k

′
1,k
′
2)

×
[
f(k′1, t)f(k

′
2, t)− f(k1, t)f(k2, t)

]
Here, f is the single-particle distribution function. In-
tegration is over all initial states (k2) and final states

(k′2) of the partner electron and all final states (k′1)
of the sample electron. Replacing the product of the
distribution functions by the two-particle distribution
function g

f(k1, t)f(k2, t)→ g(k1,k2, t),

gives a linear scattering operator.

Q[g](k1,k2, t) =

∫
dk′1 dk

′
2 S(k1,k2;k

′
1,k
′
2)

×
[
g(k′1,k

′
2, t)− g(k1,k2, t)

]
A Boltzmann-like kinetic equation is derived for the
two-particle distribution function g, which is posed in
the six-dimensional momentum space (k1,k2). This
equation is linear and can be transformed into an in-
tegral equation of the form

g(x) =

∫
g(x′)K(x′, x) dx′ + g0(x)

x ≡ (k1,k2, t)

In this work, we solve this integral equation by a
Monte Carlo method [3].

3 Results and Discussion

In the following simulations we are assuming an elec-
tron concentration of 1019 cm−3, and a lattice tem-
perature of 300 K.

Fig. 1 shows how an ensemble of hot electrons
gets cooled down when interacting with the phonons
of the crystal lattice and additionally with an electron
ensemble at lattice temperature. The mean energy of
the hot electrons relaxes faster when EES is present.
The mean energy of the cold electrons is temporarily
increased by the energy transfer from the hot carriers.
Averages are calculated by sampling the two ensem-
bles at equidistant time steps. The number of particle
pairs simulated is 2 · 104.

Another application of the transient MC algorithm
is the study of the response of the carriers to an abrupt
change in the electric field. At 1 ps a field step of
50 kV/cm has been applied. Fig. 2 shows that EES en-
hances the velocity overshoot and gives a faster rise of
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Fig. 1. Relaxation of the mean energy is affected by EES.
The initial two-particle distribution function assumed con-
sists of a hot ensemble at 3000K and a cold ensemble at
300K.
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Fig. 2. Velocity overshoot (left, black) and energy transient
(right, red) after applying an electric field step of 50 kV/cm
at 1 ps.

the mean energy towards the stationary value. Again,
in the simulation we sampled an ensemble of 2 · 104
particle pairs at equidistant time steps.

Finally, we apply the stationary MC algorithm to
calculate the momentum distribution functions at dif-
ferent field strengths. In accordance with thermody-
namics, in equilibrium a Maxwellian distribution is
obtained in our simulations. EES has no effect on
the equilibrium distribution, see Fig. 3. With an elec-
tric field applied there is a noticeable difference for
a lattice temperature of 77 K. With EES the non-
equilibrium distribution is wider.

4 Conclusions

We have developed a two-particle Monte Carlo algo-
rithm for the solution of a two-particle kinetic equa-
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Fig. 3. Momentum distribution functions at equilibrium and
at 20 kV/cm, lattice temperature 77 K.

tion that includes electron-electron scattering.
We demonstrate the impact of electron-electron scat-
tering on the transient relaxation of an ensemble of
hot carriers, on the veloicty overshoot in the presence
of a field step, and on the shape the momentum distri-
bution function.
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Summary. Electromagnetic and electromagnetic-thermal
coupled problems are solved by the FDTD technique for
an AlN:Mo ceramic layer irradiated by a millimeter-wave
plane wave. Computation uses experimental data on tempe-
rature-dependent complex permittivity, specific heat, and
thermal conductivity. Non-uniformity of patterns of dissi-
pated power and temperature is quantified via standard-
deviation-based metrics, and the composition of the ceramic
material producing the highest levels of heating uniformity
and total dissipated power is determined.

1 Introduction

Electromagnetic (EM) heating is employed in appli-
cations in food engineering, chemistry, materials sci-
ence, etc. EM heat exchangers (HE) have been in-
troduced as core elements of solar energy collectors,
power beaming applications, and microwave thermal
thrusters. A fundamental understanding of the interac-
tions of the millimeter-wave (MMW) EM field with a
ceramic material is necessary for effectively utilizing
EM energy in controllably heating the material and
transferring heat to fluid flowing through neighboring
channels [1, 2]. In this paper, we study the process of
MMW heating of a rectangular block of an AlN:Mo
composite by the means of EM and EM-thermal mod-
eling and characterize the ceramic material in terms of
homogeneity of heating and total absorbed power.

2 Computational Scenario & Input Data

A MMW HE under development involves ceramic
tiles with a metal baseplate attached to their back sur-
faces, and the adjacent channels with fluid flow (Fig.
1(a)). To help design a physical prototype, we use a
computer model dealing with a ceramic block irra-
diated by a plane wave (Fig. 1(b)). Due to dielectric
losses in the material, a 3D temperature field is in-
duced inside the block. The goal is to find a compo-
sition of the ceramic material that leads to a uniform
heat distribution under applicable requirements.

The considered parameters affecting the heating
pattern are the EM and thermal material parameters:
dielectric constant ε ′, loss factor ε ′′, specific heat Cp,

(a) (b)

Fig. 1. Concept of a MMW HE (a) and 3D view of the con-
sidered computational scenario (b).

and thermal conductivity k. We consider a set of AlN
samples with Mo doping; by varying the percent Mo
in the AlN:Mo composite, both the EM and thermal
parameters can be significantly changed.

Temperature characteristics of the dielectric con-
stant and loss factor were obtained experimentally
with the use of a dedicated apparatus [3]: ε ′ and ε ′′

were measured at 95 GHz for temperatures up to
∼600 oC for several samples of AlN with concentra-
tions of Mo doping from 0.25 to 4%. The character-
istics turned out to be approximately linearly depen-
dent on T , so ε ′ and ε ′′ at temperatures up to 1000
oC were determined by linear extrapolation. Temper-
ature characteristics of Cp and k were measured for
Mo = 4% from room temperature to ∼1000 oC, and
they were assumed to be similar to those for lower
concentrations of Mo.

3 Computational Techniques

The approaches used in studying the process of MMW
heating of the AlN:Mo blocks are based on (i) EM and
(ii) EM-thermal (coupled) models. Both solve the re-
lated problems by a 3D finite-difference time-domain
(FDTD) technique as it is implemented in the solver
QuickWave [4].

In the first approach, we compute patterns of EM
power (Pd) dissipated in the composite due to dielec-
tric losses. In the second, the EM and thermal solvers
are coupled through experimental data on temperature-
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Fig. 2. Patterns of dissipated power on the back surface of
the AlN:Mo blocks with 0.25, 2, 4% of Mo at 20, 400, 800
oC; maximum value of Pd is shown under each pattern.

dependent material parameters. While (ii) allows for
mimicing time evolutions of the T fields, (i) produces
patterns identical to corresponding temperature distri-
butions in the absence of thermal conductivity.

Profiles of the Pd field are quantitatively charac-
terized by a non-uniformity metric λ introduced as

λ = σ/µ, (1)

where σ is the standard deviation of the Pd values in
all FDTD cells in the sample from the average value,
and µ is their mean; the lower λ , the more uniform
a pattern. For the T fields varying in time, the metric
depends on the initial state of the process:

λ =

√
σ2−σ02

T̄ − T̄0
, (2)

where σ(σ0) is the standard deviation of the final (ini-
tial) temperature in all FDTD cells from the final (ini-
tial) average temperature, and T̄ (T̄0) is the final (ini-
tial) average temperature. For 2D patterns, computa-
tion of λ is based on the values of Pd and T in a par-
ticular layer of cells, while for 3D patterns, λ is found
using the values in the cells from everty layer.

The process of MMW heating is characterized by
parameters λT as the average of values of λ and Pdt
as the average of total power dissipated in the ceramic
material; both λT and Pdt are computed for a set of T
values in the temperature range. The goal of this com-
putational study is to find the percent Mo that leads to
the lowest possible value of λT and highest possible
value of Pdt .

4 Results & Discussion

The dimensions of the AlN:Mo composite in the con-
sidered scenario are 5×5×2 mm, and the power of the

(a) (b)

Fig. 3. Measure of non-uniformity of heating of an AlN:Mo
block λT (a) and total dissipated power Pdt (normalized to
unity) (b) as functions of concentration of Mo.

incident field is 1 W. The material is irradiated by the
plane wave at 95 GHz. Patterns of Pd are computed
for five percentages of Mo in the interval 0.25 ≤ Mo
≤ 4.0% and six values of T in the interval 20 ≤ T
≤ 1,000 oC. For each point, the sample was assigned
with corresponding values of ε ′ and ε ′′. Patterns of Pd
on the back of the block are shown in Fig. 2. The non-
uniformity and energy efficiency of each heating are
characterized by the graphs in Fig. 3.

While all the materials are heated quite non-uni-
formly, the composites with less than 1% and with
4% of Mo are characterized by lower values of λT
compared to other materials. In terms of homogene-
ity, the ceramics with Mo ≤ 1% appear attractive, but
in terms of dissipated power the composites with Mo
≥ 3% look preferable as they absorb almost twice as
much as the materials with Mo ≤ 1%.

Analysis of the heating process by technique (ii)
reveals more spread heating patterns due to the effect
of thermal conductivity. Application of technique (i)
illustrated in this paper is still meaningful as it leads
to best heating patterns prior to heat diffusion and sets
terms for optimization. Being computationally more
expensive, (ii) could be used after (i) to look for an
optimal material in the domain suggested by (i).
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Abstract A quantum hydrodynamic model for charge trans-
port in graphene is derived from a moment expansion of the
Wigner-Boltzmann equation. The needed closure relations
are obtained by adding to the semiclassical ones quantum
corrections based on the equilibrium Wigner function. The
latter is obtained from the Bloch equation by taking into
account the appropriate energy band of graphene. Numeri-
cal solutions of this model are currently under investigation.
The semiclassical counterpart has been formulated in [1, 2]
by exploiting the Maximum Entropy Principle (MEP).

1 Introduction

Quantum semiconductor devices are playing an in-
creasingly important role in advanced microelectronic
applications, including multiple-state logic and mem-
ory devices. Therefore in the modeling and simula-
tions of semiconductor devices (like MOSFET and
RTD) in ultra-small size (say nano-size) in a strong
electric field, the effects of quantum mechanics have
to be taken into account. Graphene, consisting of an
isolated single atomic layer of graphite, is an ideal
candidate for quantum devices. To take into account
quantum phenomena, the semiclassical Boltzmann
equation is not enough to describe charge transport.
As a starting point for deriving of the quantum cor-
rections to the semiclassical model, we consider the
Wigner equation. In this work we present the formu-
lation of quantum hydrodynamic models for charge
transport in graphene which consist of the semiclas-
sical models developed in [3, 4], augmented with h̄2

order corrections obtained by the scaling of high field
and collision dominated regime [5].

2 Wigner equation

In the proximity of the Dirac points K (K’), which are
the vertices of the Brillouin zone, by choosing in the
k-space a reference frame centered in the considered
Dirac point, the energy dispersion relation can be con-
sidered approximately linear with respect to the mod-
ulus of the wave-vector k. It is not clear if a small gap
between the conduction and the valence band exists.
Therefore we adopt the following regularization

E (k) =±vF
√

a2 + p2,

where p = h̄|k|, vF ' 1 × 106 cm/s is the Fermi ve-
locity, h̄ is the reduced Planck’s constant. The upper
sign refers to the conduction band while the lower one
refers to the valence band. a is a small parameter re-
lated to the nearest-neighbour hopping energy [6]. To
derive a transport equation, we introduce the single
electron Wigner quasi-distribution w(x, p, t), depend-
ing on the position x, momentum p and time t. Evolu-
tion is governed by the Wigner-Poisson system for w
and the electrostatic potential V

∂w(x, p, t)
∂ t

+S[E ]w(x, p, t)−qθ [E ]w(x, p, t) =C[w],

∇ · (ε∇V ) =−q(ND−n),

where q is the elementary (positive) charge, ND is
donor carrier concentration, C[w] is the collision term
representing the electron-phonon scattering while S[E ]
and θ [E ] represent the pseudo-differential operators

S[E ]w(x, p, t) =
i

h̄(2π)2

∫
R2

x′×R
2
ν

[E (p+
h̄
2

ν , t)+

−E (p− h̄
2

ν , t)]w(x′, p, t)e−i(x′−x)·ν dx′dν ,

θ [E ]w(x, p, t) =
i

h̄(2π)2

∫
R2

p′×R
2
η

[V (x+
h̄
2

η , t)+

−V (x− h̄
2

η , t)]w(x, p′, t)ei(p′−p)·η d p′dη .

In the semiclassical limit h̄→ 0, the Wigner equation
reduces to Boltzmann one.

3 Equilibrium Wigner function

If we denote the density matrix at equilibrium by
ρeq(r,s,β ), it satisfies the Bloch equation

∂ ρeq(r,s,β )
∂β

=−1
2
[Hrρeq(r,s,β )+Hsρeq(r,s,β )].

Applying the Fourier transform to the Bloch equation,
we get
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2

∂weq(x,p,β )
∂β

=− 1
2

 1

(2π)2

∫
R2

x′ ×R
2
ν

E

(
p+

h̄
2

ν

)
+E

(
p− h̄

2
ν

)
weq(x′ ,p,β )e−i(x′−x)·ν dx′ dν−

− q

(2π)2

∫
R2

p′ ×R
2
η

V
(

x+
h̄
2

η

)
+V

(
x− h̄

2
η

)
weq(x,p′ ,β )ei(p′−p)·η dp′ dη

 ,

where weq(x,p,β ) is the equilibrium Wigner func-
tion. We looked for solution of the type

weq(x,p,β ) = w(0)
eq (x,p,β )+ h̄2w(1)

eq (x,p,β ).

After some algebra we get the equilibrium Wigner
function

weq(x, p,β ) = exp(qV (x)β )exp(−βE (p))
{

1+
qβ 2h̄2

8
∂ 2E (p)
∂ pi∂ p j

∂ 2V (x)
∂xi∂x j

+

+
β 3h̄2

24

[
q2 ∂ 2E (p)

∂ pi∂ p j

∂V (x)
∂xi

∂V (x)
∂x j

−q
∂ 2V (x)
∂xi∂x j

viv j

]}
+o(h̄2).

4 Quantum hydrodynamic model

Supposing the expansion

w = w(0)+ h̄2w(1)+O(h̄4)

holds and by proceeding formally, as h̄ −→ 0 the
Wigner equation gives the semiclassical Boltzmann
equation. Therefore we identify w(0)(x, p, t) with the
semiclassical distribution which has been approxi-
mated in [1, 2] with the maximum entropy principle
estimator w(0)(x, p, t)≈ fMEP(x, p, t).

At first order in h̄2 one finds

∂w(1)(x, p, t)
∂ t

+v ·∇xw(1)(x, p, t)− 1
24

∂ 3E (p)
∂ pi∂ p j∂ pk

∂ 3w(0)(x, p, t)
∂xi∂x j∂xk

+

+q∇xV (x)∇pw(1)(x, p, t)− q
24

∂ 3V (x)
∂xi∂x j∂xk

∂ 3w(0)(x, p, t)
∂ pi∂ p j∂ pk

= C [w(1)]

Hereafter, suppose w(1) = w(1)
eq .

As an example, consider a 6-Moment Model based
on the following moments

2
(2π h̄)2

∫
R2

w(x, p, t)d p = n(x, t) density,

2
(2π h̄)2

∫
R2

w(x, p, t)E (p)d p = n(x, t)W energy density,

2
(2π h̄)2

∫
R2

w(x, p, t)v(p)d p = n(x, t)V linear momentum density,

2
(2π h̄)2

∫
R2

w(x, p, t)E (p)v(p)d p = n(x, t)S energy-flux density.

The corresponding evolution equations are given by
1

1 Einstein’s summation convention is used

∂

∂ t
n(x, t)+

∂

∂xi

n(x, t)Vi −
h̄2

24

∂2
(

n(x, t)F(0)
i jk

)
∂x j ∂xk

= 0, (1)

∂

∂ t
(n(x, t)W )+

∂

∂xi

n(x, t)Si −
h̄2

24

∂2
(

n(x, t)F(1)
i jk

)
∂x j ∂xk

−q
∂

∂xi
V (x) ·n(x, t)Vi +

+
qh̄2

24
∂3V (x)

∂xi∂x j ∂xk
n(x, t)F(0)

i jk =CW [w(0)], (2)

∂

∂ t

(
n(x, t)Vi

)
+

∂

∂x j

n(x, t)T (0)i j −
h̄2

24

∂2
(

n(x, t)G(0)
i jkl

)
∂xk∂xl

−q
∂

∂x j
V (x) ·n(x, t)H(0)

i j +

+
qh̄2

24
∂3V (x)

∂x j ∂xk∂xl
n(x, t)L(0)i jkl =CVi

[w(0)], (3)

∂

∂ t

(
n(x, t)Si

)
+

∂

∂x j

n(x, t)T (1)i j −
h̄2

24

∂2
(

n(x, t)G(1)
i jkl

)
∂xk∂xl

−q
∂

∂x j
V (x) ·n(x, t)Vj ·n(x, t)H

(1)
i j +

+
qh̄2

24
∂3V (x)

∂x j ∂xk∂xl
n(x, t)L(1)i jkl =CSi

[w(0)] (4)

where Vi and Si are the significant components of
macroscopic velocity V and energy-flux S respec-
tively.
All the additional fields are expressed as integrals
involving w(0) and w(1). Regarding the production
terms, they are given by the sum of contributions aris-
ing from the different types of phonon scattering. Ex-
plicit closure relations have been obtained and numer-
ical simulations are under current investigation.
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Summary. In this contribution we show that simulations
are capable to predict possible failures of realistic devices
of the power grid during short time current tests. We quan-
titatively compare transient 2-way coupled electro-thermal
FEM calculations with lab results of GIS earthing switches.
We also investigate the importance of modeling geometrical
details, and the sensitivity of the computations with respect
to electric contact resistances (ECRs) at interfaces. It can be
concluded that products can reliably be designed by using
such simulations, if the ECRs are known in advance.

1 Introduction

Devices in the power grid have to be able to carry
large short-time currents (STC) in order to guarantee
reliable supply of electricity. STCs can be caused by
short-circuits in the grid. They are typically one order
of magnitude higher than normal operating currents
and last up to 3 s. This results in fast transient tem-
perature rise and causes intensive thermal load of all
components. The capability to withstand STC has to
be proven by short-time withstand current type tests,
see [1]. Simulations reduce the number of costly and
time-intensive STC lab tests and increase the prod-
uct understanding. The goal of electro-thermal STC
simulations is to calculate the transient temperature
distribution and to evaluate if the temperature stays
below certain limits (e. g. melting temperature). The
most important phenomena that have to be considered
for an electro-thermal simulation of a STC test are:

• Ohmic losses in the volume of the device
• Temperature dependence of the el. conductivity
• Ohmic losses due to ECRs at interfaces
• Heat conduction inside of the device

Heat exchange with the environment is of minor im-
portance, due to the short duration. Phase transitions
also don’t have to be modelled, because a test is
passed only if melting temperature isn’t reached.

2 Simulation method

The simulation is carried out by using a transient two-
way coupled electro-thermal method, see Fig. 1. This
is necessary because of the temperature dependence
of the electrical conductivity, see Fig. 2. The exchange

of information (P, T) is triggered when the temper-
ature change locally exceeds 100K. It is not neces-
sary to use a transient electromagnetic solver, because
the time-constant for the applied 50Hz current is way
smaller than the time-constant of the heating pro-
cesses. On the electromagnetic side we use an A−

Fig. 1. Two-way-coupled simulation

Fig. 2. T-dependence of electrical conductivity of the used
Aluminum alloy

φ-based FEM solver of the time-harmonic Maxwell
equations, see [2]. The ECRs are therein modelled
as discontinuities of the scalar electric potential, that
correspond to constant contact resistances. So we did
not use elaborate temperature dependent models for
the ECRs as e.g. described in [3], [4]. Physically this
temperature independent ECR is the simplest repre-
sentation of a contact for which the increasing ma-
terial resistivity during heat-up is compensated by a
decrease of the total resistance due to a larger contact
area caused by material softening. Note that the in-
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clusion of the ECRs are mandatory, because of their
large contribution to the losses, see Fig. 3.

Fig. 3. Power loss density distribution and total losses of the
constituting parts.

A standard transient heat conduction FEM solver
is used on the thermal side. The heat exchange with
the environment is taken into consideration by sim-
ple heat exchange coefficients. The entire simulation
method is embedded into CAD and the solvers run on
a large computer cluster. This enables product design-
ers to carry out simulations of realistic devices.

3 Comparison lab results v.s. simulations

Two different designs of an earthing switch of an
ABB1 gas insulated switchgear (GIS) was tested in
the laboratory. A smaller design A and a bigger de-
sign B. STC tests with Irms = 63kA/80kA were carried
out on design A. This design passed the 63kA test. It
also passed an 80kA test of 2sec, but failed an 80kA
test of 2.5sec. The second design B passed both tests
with Irms = 80kA/90kA of 3sec. The figures 4 and 5
show simulation results of the temperatures. The sim-
ulations reproduce very well the experimental results
of failure or pass. Melting temperature is reached after
1.8sec for design A with 80kA applied. This is shortly
before the experimental failure between 2.0−2.5sec.
That is not wrong, because contacts do not immedi-
ately fail when melting temperature is reached [5].
The applicable standard [6] even allows light welding
of contacts to pass the STC type test.

4 Sensitivity analysis

We tested if

• geometrical details like bolts are of importance,
• and what influence a change in the electrical con-

tact resistance has on the temperature.

1 www.abb.com

Fig. 4. Maximum of the temperature over time

Fig. 5. Design A in upper two pictures, design B in lower
two pictures. Two orthogonal cutting planes through hottest
area. Temperature after 3 seconds on same scale. Melting
temperature is 835K.

It turned out that details like bolts cannot be neglected
and that is of key importance to know the ECRs in ad-
vance. These results will be shown at the conference.
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Summary. The main objective of this paper is to develop a
parallel algorithm in order to reduce the computational time
required to solve coupled multiphysics problems that arise
in the RF-MEMS switches. A coupled electrostatic/liniar-
elastic analysis is performed allowing consequent model or-
der reduction to be carried out efficiently. The parallel algo-
rithm uses the domain decomposition technique. It is based
on a weak formulation and implemented with FreeFem++
and MPI. The results are compared with COMSOL simula-
tions - strong formulation and parallel solver.

1 General

In the latest time, RF-MEMS switches had an im-
portant evolution, driven by their huge economic and
practical potential. This justifies the importance of re-
lated research topics that have as a final target the cor-
rect and effective modeling required for designers of
advanced Micro and Nano-electronic systems.

Modeling has two main objectives. The first is to
obtain, through numerical simulation, the parameters
describing switching behavior of the devices, or when
they do not move and have to conduct an RF signal.
The second objective is to extract an equivalent elec-
tric circuit (reduced order model - ROM) which, ap-
proximates the behavior of the studied device. For the
first objective, the simulation must be done using a
reasonable computational effort, whereas for the sec-
ond objective the extracted reduced model must have
the lowest possible order that would still preserve an
acceptable accuracy and its essential characteristics.
The contribution of this paper is focused on the mul-
tiphysics part of first modeling objective.

2 The Physical Model

The physical model involves a coupled electrostatic/
elasto-static field formulation. A constant voltage is
applied on the actuation electrode with respect to the
elastic membrane, which is grounded. If the applied
voltage is greater than a certain value, due to the elec-
trostatic force, the membrane will drop on the elec-
trode closing the switch. The highest voltage that still
doesn’t close the switch is called the static pull-in
voltage (Vpi). In our previous research, we focused

on the extraction of a ROM able to predict with an ac-
ceptable accuracy the value of Vpi. The success of the
reduction algorithm depends on the accuracy of the
static simulation which involves using high-density
discretization grids. This leads to significant computa-
tion times especially for complicated geometric struc-
tures. In this paper, we aim to investigate how we can
decrease the computational cost by using high perfor-
mance computing techniques but without reducing ac-
curacy.

Fig. 1. The conceptual model of the simple bridge RF-
MEMS

3 The Mathematical Model

Because of the symmetry of the device we can use
only a half of the 2D model (see Fig. 2). According to
the physical description, we can distinguish two main
computational domains: the electrostatic one repre-
sented by the thin dielectric which lays over the fixed
actuation electrode (Ω1) together with the surround-
ing air gap (Ω2) and the structural-elastic domain
(Ω3) represented by the elastic membrane (bridge).
The electrostatic problem implies solving the Laplace
equation for the electrical potential V in the domains
Ω1 and Ω2:

∆V = 0 in Ω1 and Ω2, (1)

with Dirichlet boundary conditions on the electrode
(∂Ω11) and bridge (∂Ω23) surfaces:

V =Va on ∂Ω11, V = 0 on ∂Ω23, (2)

and Neumann boundary conditions on the rest of the
boundary of the electrostatic domain:
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Fig. 2. The computational domains used by the mathemati-
cal model

∂V
∂n

= 0 on ∂Ω22∩∂Ω24. (3)

For the structural - elastic domain one can write the
principle of virtual displacements:∫

Ω3

fδudΩ +
∫

∂Ω32

tδuds =
∫

Ω3

σ δε dΩ (4)

which leads to finding the displacement u ∈ H2(Ω3)
by solving the weak form of the elasticity equation:∫

Ω3

(2µε(u) · ε(ψ)+λ∇u∇ψ)dx =
∫

Ω3

ψf dx (5)

for the applied force f∈ L2(Ω3) and any ψ ∈H1
0 (Ω3).

[ε] and [σ ] are the strain and stress tensors. The bound-
ary conditions taken into account are:

u = 0 on ∂Ω32, σn = t on ∂Ω34 (6)

4 The Algorithm

For our case, the algorithm uses 3 paralleled proces-
sors (called Pi). Each of them is taking care of one
of the domains Ωi. For the electrostatic problem, a
Schwartz decomposition algorithm is used by solving
(1)-(2) on each domain Ω1 and Ω2, with the additional
boundary conditions:

V1|∂Ω12 =V2|∂Ω12 =Vc (7)

Starting with Vc = 0, each of P1 and P2 solves (1)-
(2) until (7) becomes true within an imposed accu-
racy. Different mesh refinement degrees can be used
for the two domains, which is good, taking into ac-
count that Ω1 needs a much finer mesh than Ω2. P3
takes care of the elasticity problem defined on Ω3. P2
will finally provide the electrostatic force which acts
on the Ω3 bridge. On the other hand, P3 will provide
the displacement needed to re-iterate the electrostatic
problem with a modified mesh, according to the new
bridge position. It has to be remarked that only Ω2 and
Ω3 are re-meshed during the process. Only during the
first iteration P3 waits after P1 and P2 to finish - in or-
der to get the first displacement. In the rest of the time

Table 1. Flow chart of the parallel algorithm

Step P1 P2 P3

S1 read Va
S2 mesh Ω1 mesh Ω2 mesh Ω3
S3 compute V1 compute V2 if first iter. wait for f
S4 broadcast V1 broadcast V2 get f
S5 wait for another if (V1−V2)> err compute u

iter. or STOP flag goto S3
S6 broadcast Vc if (u > Hgap)break
S7 compute f if err(u) ok
S8 return u; STOP
S9 broadcast f else

S10 wait for u broadcast u
S11 get u remesh Ω3
S12 remesh Ω2 re-iterate from S4
S13 re-iterate with P1

starting from S2

Fig. 3. Comparison of the displacement w.r.t. applied volt-
age

all solvers will run independently. However certain
waiting times are needed for data synchronization and
transfer. The above mentioned algorithm was imple-
mented with the highly adaptable mathematical soft-
ware package FreeFem++. Its efficiency was proven
by comparing it with the performance of a very popu-
lar professional multiphisycs software package: Com-
sol Multiphysics. Using FreeFem++ capabilities, our
parallel algorithm could be implemented and tested in
a very efficient manner on an 8 core I7 Intel processor.
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Summary. Thermal management is one of the key issues
arising in designing light-emitting diode (LED) based lumi-
naire products. Dynamic compact thermal models (DCTMs)
are required to predict the thermal behaviour of LED pack-
ages fast and accurately in system level simulations. The
European Delphi4LED consortium aims to develop multi-
domain (electrical-thermal-optical) compact models. One
of its targets is to develop a methodology to extract DCTMs
that can handle multiple heat sources of LEDs.

This presentation focuses on the implementation of
Krylov subspace based model order reduction (MOR)
methods [5] in extracting DCTMs for LEDs. Various
techniques for generating DCTMs exist in the litera-
ture, for instance, see [1–4,6]. Most of them focus on
the extraction of DCTMs using thermal RC-network
optimization techniques. MOR methodologies based
on Krylov subspaces are capable of handling MIMO
(multi-input-multi-output) dynamical systems. Hence,
such methodologies are suitable for LEDs with mul-
tiple heat sources and multiple dies. The approach
of MOR consists of semi-discretising the system of
partial differential equations (PDEs) describing the
physics of LED packages in the spatial domain us-
ing a 3D CFD tool such as FloTHERM, leading to a
system of ordinary differential equations (ODEs) in
the time domain. This can then be handled by sev-
eral MOR techniques, and reduced to obtain accept-
able compact model representations of the behaviour.
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Fig. 1. Transient solutions of the single-die LED pack-
age for five different outputs comparing the full-order
(n=22,440) model with the reduced-order (r=34) model.

The temperature plots for five outputs from a single-
die LED comparing the full-order model with the
reduced-order model is shown in Figure 1. The sim-
ulation was performed for 100 time steps with a uni-
form step size ∆ t = 1s in 0,100 where the model was

at an initial constant temperature of 25◦C at t = 0.
The CPU time spent on solving the full-order model
is 14s, while the time spent on solving the reduced-
order model is 1s. An excellent match is noted for
each output as shown in Figures 1 and 2.
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Fig. 2. Relative errors of the temperatures

The results presented in this paper show that the
extraction of DCTMs using iterative rational Krylov
is highly accurate for a set of benchmark problems
developed within the Delphi4LED project.
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Summary. In this work, we describe the potential of the
computational modeling method, known as density func-
tional theory (DFT), to investigate the physical properties
of emerging materials of industrial interest. In particular,
we report results obtained by the application of the DFT
method to transparent conductive oxides (SnO2 and ZnO),
alternative semiconductors (graphene) and ferroelectric ce-
ramic materials (BaTiO3).

1 Potential of DFT method

A plethora of emerging materials are currently un-
der the magnifying lens of the Industry for their elec-
tronic, optical and mechanical applications. In this
scenario, it is crucial to understand the physical prop-
erties of these emerging materials in reasonable time.
In spite of the considerable amount of efforts put to
delve into physical and chemical properties of such
materials from the experimental standpoints [1], there
is still a long way to go until their fundamental char-
acteristics are properly understood [2]. Experimen-
talist can only claim their findings until where their
apparatus (precision) allows them, often resorting to
analogies to discuss and infer about the behavior of
their samples at the fundamental scale. This is where
computational models, and particularly the density
functional theory (DFT) methods, play an important
role and have its stronghold [3]. This method is an
alternative (variational) procedure to the solution of
Schrödinger’s equation, where the functional of elec-
tronic energy is minimized with respect to electronic
density, allows one to compute the electronic structure
of atoms, molecules, and crystals [3–5].Furthermore,
the reason for its popularity stems from a good bal-
ance between reasonable and useful accuracy (e.g.,
bond lengths, vibrational frequencies, elastic constants
are calculated with errors of less than a few percent),
speed, lower computational cost, and computational
efficiency [5]. Accordingly, DFT methods have al-
ready been established as a valuable research tool
both in the independent applications and as a comple-
ment of experimental investigations. Nevertheless, the
basic difficulty is that an exact solution to this prob-
lem by means of a direct solution of the Schrödinger

equation, either in its numerical, variational or pertur-
bation theory versions, is nowadays out of the reach
of even the most advanced supercomputers [5]. It is
for this reason that alternative ways for handling the
quantum-mechanical many-body problem have been
vigorously pursued during the last few years by math-
ematicians, quantum chemists and condensed mat-
ter physicists. The traditional methods to compute
the electronic structure of matter, in particular the
Hartree-Fock theory, are based purely on the multi-
electronic wavefunction [6]. Although this resolution
of the Schrödinger equation allows one to describe the
exact behavior of small systems, its prediction capac-
ity is limited by the fact that its equations are too com-
plex to solve even numerically. The DFT reformulates
the problem to be able to obtain, for example, the
energy and the electronic distribution of the ground
state, working with the functional of the electronic
density instead of the wavefunction. An advantage is
that the density is a much simpler quantity than the
wavefunction and therefore easier to calculate, and in
practice much more complex systems can be studied:
the wavefunction of a system of N electrons depends
on N variables, whereas electronic density only de-
pends on 3 variables (x, y, z). An important disadvan-
tage is that, except for the simplest cases, the func-
tional that relates this density to the energy of the sys-
tem is unknown. In practice (in the majority of DFT
calculations), the functionals used are the ones that
have proven to give good results, resulting often in a
semi empirical method.

2 Application of DFT method to
emerging materials

In the last five years, we have used the DFT method,
as it is implemented in the Vienna ab initio package
(VASP) code [7], to delve into structural, electrical,
magnetic, and optical properties of many TCO mate-
rials. Since the majority of properties and newly dis-
covered physical effects in the oxides occur due to the
presence of different type of point defects, the main
research was dedicated to quantum-chemical studies
of different point defects (e.g., vacancies, interstitials,
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Frenkel defects, Schottky defects, antisites, Fig. 1),
complemented with the doping and codoping of crys-
tals with different elements (e.g. H, N, Al, Mg, F,
Nb, etc.). The study has been carried out in the fol-
lowing materials: (i) zinc oxide (ZnO); (ii) rutile and
anatase of titanium dioxide (TiO2); (iii) tin dioxide
(SnO2); (iv) chromium oxide (α-Cr2O3); (v) stron-
tium titanate (SrTiO3); and graphene. A big deal of
unexplained effects and phenomena in these crystals
have been revealed by our group recently: (a) repro-
duce both intrinsic n-type as well as p-type conductiv-
ity in concordance to results observed in real samples
of SnO2 material [2] , (b) the H atoms has been pro-
posed as the alternative way to attain n-type electrical
conductivity in SnO2 and ZnO [8, 9], (c) we explored
the changes endured by energy gap (EG) of semi-
conducting (armchair) graphene nanoribbons (AG-
NRs) when Stone-Wales (SW) defects were placed in-
side their lattices [10], (d) study the adsorption of an
ethanol molecule on the BaTiO3 (001) surface [11].
These and many other results are proving the poten-
tial of DFT methods over the years.
In the present work we propose to delineate the changes
experienced by the above-mentioned materials when
different defects are included within their lattice. The
results will be investigated in terms of the density of
state (DOS) pattern (Fig. 2) (e.g. type of conductiv-
ity and number of free carriers), the electron localiza-
tion function (ELF) graphs (charge localization), and
Bader charge analysis (e.g. the structural organization
of atoms). Specifically, by taking a close look at the
Fermi level (dotted vertical line in the DOS) within
the DOS pattern, one can find the type of conductiv-
ity the material has acquired. Moreover, asymmetry
in the α and β spin, in the DOS, indicate that mag-
netic properties have been acquired by the material,
as in (Fig. 2). Partial contributions are analyzed to un-
derstand, from a chemical point of view, the rise of
the changes endured by the crystallographic lattice.
This along with the Bader Charge analysis allows us
to provide a clear description about the nature of the
atomic movements and therefore the final geometry
of the crystal
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Summary. We present an efficient method for fast and ac-
curate analog simulations of integrated circuits in the time
domain. Our approach combines and extends concepts from
linear algebra and circuit theory in a unifying way. This
allows the development of a block diagonal solver which
can additionally be accelerated by a partition-bypass strat-
egy. Compared to the state-of-the-art solver KLU the new
method leads to significant sequential and parallel speedups,
while keeping SPICE-level accuracy.

1 Introduction

In SPICE-like simulators the mathematical formu-
lation of analog circuits is based on the modified
nodal analysis (MNA), which seeks for all node volt-
ages and the currents of voltage-defined branches.
For time-domain simulations the application of Kirch-
hoff’s current law then leads to a system of differential-
algebraic equations of the general form

d
dt

q(x(t))+ f (x(t))+ s(t) = 0. (1)

Here q, f , and s are the vectors of charges, resis-
tive currents, and independent stimuli, respectively,
whereas x is the vector of unknown MNA voltages
and currents. At time point tk the time derivative of
the charge vector is discretized by an implicit time in-
tegration method of the form

d
dt

q(x(t))
∣∣∣∣
t=tk

= αkq(x(tk))+βk,

with a method-specific integration coefficient αk and
a vector βk of backward data. Applied to Eq. (1) the
relation for the unknown xk := x(tk) reads

rk(xk) := αkq(xk)+βk + f (xk)+ s(tk) = 0.

The Newton-Raphson method transforms this nonlin-
ear system to a sequence of linear systems which seek
for an increment ∆xk to the unknown xk:(

αk
dq(xk)

dxk
+

d f (xk)

dxk

)
︸ ︷︷ ︸

=:A(xk)

∆xk =−rk(xk). (2)

Constructing and solving the linear systems (2) for
discrete time points is the computationally dominat-
ing task within transient simulations, cf. Fig. 1. For
more details we refer to [1].

compute initial solution x0 at t0=0

determine next time point tk

build matrix A(xk) and right-hand side −r(xk)

solve the linear system A(xk)∆xk = −r(xk)

update xk ← xk + ∆xk

converged?

tk ≥ T?

output
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N
ew

ton
iteration

no

tim
e

in
teg

ra
tion

Fig. 1. Transient simulation in the time domain [0,T ].

2 BBD solver with partitioning bypass

2.1 Circuit partitioning

The basis of our bordered-block diagonal (BBD) solver
is an appropriate circuit partitioner which groups the
devices into distinct parts. They are only connected
by so-called coupling nodes as sketched in Fig. 2.

+
−

Fig. 2. Splitting of an electrical circuit into a blue and a red
partition. The coupling nodes are marked by green bullets.

Splitting into p partitions and reordering the rows
and columns accordingly transforms the linear sys-
tem (2) into the BBD structure with p diagonal par-
tition blocks Ai,i and coupling blocks indexed by c.
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2 
A1,1 A1,c

. . .
...

Ap,p Ap,c
Ac,1 · · · Ac,p Ac,c




y1
...

yp
yc

=


b1
...

bp
bc

 (3)

Our BBD solver is based on a static graph partition-
ing algorithm according to [2] which minimizes the
number of coupling nodes. Additionally we limit the
number of to be expected fill-ins in Ac,i by a certain
threshold, and we ensure that each diagonal block can
be solved by static pivoting. Otherwise further nodes
are moved to the coupling part.

2.2 Solving the BBD system

By splitting the coupling system into contributions
from the individual partitions, Ac,c = A(1)

c,c + . . .+A(p)
c,c

and bc = b(1)c + . . .+ b(p)
c , the BBD system (3) can

be constructed in a parallel partition-based way. The
solving of Eq. (3) is based on the solvability of each
individual diagonal block, which is assured by the
construction of the partitions. Assuming yc is known,
the solution for partition i is yi = A−1

i,i (bi −Ai,cyc) and
can be calculated in parallel for all partitions. The so-
lution of the coupled system is determined by

p

∑
i=1

=:Si︷ ︸︸ ︷(
A(i)

c,c −Ac,iA−1
i,i Ai,c

)
︸ ︷︷ ︸

=:S

yc =
p

∑
i=1

=:di︷ ︸︸ ︷(
b(i)c −Ac,iA−1

i,i bi
)

︸ ︷︷ ︸
=:d

.

The construction of the partial forward substitutions
Si and di can be done partition-wise in a fully parallel
way. Thus only the construction and solving of the
coupling system Syc = d requires a synchronization
step and has to be executed sequentially.

2.3 Partition-bypass strategy

The parallel construction and solving of the BBD
system already results in substantial speedups. Addi-
tional acceleration can be obtained by exploiting the
latency in the partitioned circuit, meaning that the ac-
tivity of an analog circuit is typically concentrated
within a few number of partitions. The main idea of
our bypass strategy is to reuse the LU-decomposed
matrix Ai,i, the right-hand side evaluation bi, and the
contributions Si and di to the coupling system from
the previous Newton iteration, if the bypass criterion
is met, cf. Alg. 1.

A partition is being bypassed when the following
two conditions are fulfilled: The Newton method has
to be converged for all MNA variables associated to
the partition, which can be easily checked by monitor-
ing the right-hand side of the BBD system. Addition-
ally, the Newton update must not exit a trust region
around the state of the latest full evaluation of the par-
tition. To ensure SPICE-accuracy, we execute one full

Algorithm 1 BBD solver with partition bypass
for i = 1, . . . , p do . can be executed in parallel

if partition i can be bypassed then
reuse Ai,i, bi, Si, di from the previous iteration

else
build partition matrix Ai,i and right-hand side bi
partial LU decomposition of Ai,i to get Si
partial forward substitution with bi to get di

build and solve the coupling system Syc = d
for i = 1, . . . , p do . can be executed in parallel

partial backward substitution with yc

evaluation per time step, so that partitions can only be
bypassed from the second Newton iteration onwards.

3 Results and conclusion

We now study the performance of the BBD solver in
the frame of Infineon’s internal analog simulator. We
investigate two layouts, a mid-sized circuit of about
35,000, and a large circuit of about 240,000 semi-
conductor devices. Fig. 3 illustrates the speedup of
our approach compared to the state-of-the-art KLU
solver.
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Fig. 3. Speedup of the BBD solver compared to KLU.

Even in sequential mode, the block diagonal struc-
ture improves the simulation time, and the partition-
ing bypass leads to additional acceleration. With en-
abled multithreading, we gain parallel speedup due to
the concurrent execution of the individual partitions.

Altogether, our BBD approach combines and ex-
tends existing approaches in an appropriate way and
results in an efficient and parallel solver which main-
tains SPICE-level accuracy.
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Summary. In magneto-static , Topology Optimization (TO)
is a tool helping to find a suitable ferromagnetic material
space distribution in order to fulfill a specified magnetic
objective. TO becomes very interesting when the designer
looks for new and unfamiliar structures. Herein, TO is used
to design a Hall Effect Thruster (HET). But, the topological
solutions are often not feasible. Thus, Parametric Optimiza-
tion (PO) is then carried out from the topological solution.
PO takes into account the manufacturing constraints as well
as the non linearity of the ferromagnetic materials.

1 Introduction

The HETs are widely used for satellites electrical
propulsion. The 3D structure of a HET is given in
the Fig. 1. Since the axisymetry of the HET, its 3D
structure is reduced into a 2D one as illustrated in
Fig.1. The main idea of a HET is that the propel-
lant is initially ionized and then, expelled thanks to
an applied electrical field; for details see [2]. The op-
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Fig. 1. 3D-2D structure of a standard Hall Effect thruster.

timal propulsion is obtained if two specifications are
respected:

• Radial magnetic field B0 whose amplitude varies
according to a gaussian function along the middle
of the plasma channel.

• Horizontal magnetic field at the exit plan.

In order to achieve that, the geometry of the variable
regions is designed (Fig.1) and the values of current
densities in the coils ( Fig.1) are sought.

The design process is done in two steps: -TO that
gives the key idea of the variables zones shape; -PO
that reshapes the topological design. Besides the vari-
ables regions, PO makes it possible to take into ac-
count as variables the other iron parts of the HET
structure. Moreover, using PO the non linearity of the
used ferromagnetic material is addressed.

2 Topology design optimization

In TO the variable regions are meshed as shown in
Fig.1 .The topology of those regions is understood
as the assignment of either iron or air in each mesh
element. Herein, the iron is considered as linear fer-
romagnetic material and it is identified by its perme-
ability value, whereas the air or void is identified by a
permeability equal to 1. In the optimization formula-
tion, the topology of the variable regions is expressed
by a scalar vector µ of the permeability values in each
mesh element. Thus, the design optimization problem
is formulated as follows:

(Pµ)



min
µ,J

F1(µ,J) =
∫

ΩT1

‖B−B0‖2
2 dΩ

uc :

F2(µ,J) =
∫

ΩT2

∥∥∥∥arctan
(Bz

Br

)∥∥∥∥2

2
dΩ ≤ ε,

(1)

with −∇× (ν(µ)B)+ J = 0, (2)

where J denote the vector of the current densities J1
and J2 in the internal and external coils (see Fig.1).
B = (Bz,Br) is the magnetic flux density obtained by
solving the equation (2) for given µ and J.

Solving (Pµ) is to search J and µ so that the
magnetic field B is the closest to B0 allover the mid-
dle of the channel ΩT 1 while keeping the flux lines
horizontal allover the exit plan region ΩT 2. The first
main issue in solving (Pµ) is that he cost and the
constraint functions are implicitly linked to the de-
sign variables J and µ via Maxwell equation (2). This
makes the gradient respect to J and µ computation-
ally expensive using classic methods like finite differ-
ence estimations. In this work, we developed the ad-
joint variable method that provides the gradient with
very cheap computational cost, [1]. The second issue
in solving (Pµ) is that the permeability scalars in µ

could take different values between 1 and the iron per-
meability. This means that the solution could not be
feasible if we do not all the composite materials with
different permeability values taken by the solution. In
order to avoid that, intermediate values of permeabil-
ity are penalized using SIMP (Solid Isotropic Mate-
rial with Penalization) method in order to obtain solu-
tions with just two materials: iron and air; for details
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see [1]. The topological design found could be seen
through Fig.2. The iron regions is those that concen-
trate the flux lines. The current density in the internal
coil is 2.1MA/m2 and in the external coil is 1MA/m2.
It is clear that the topology of the variable regions is

Fig. 2. Topological design solution of the HET.

not a feasible structure. Moreover, the ferromagnetic
material is considered as a linear material. To remedy
to all this manufacturing issues, we carry out another
step of design optimization as detailed in the next sec-
tion.

3 Parametric optimization adjustment

In order to have a feasible structure the topological
solution is slightly modified while making sure that
the cost and the constraint values are not strongly im-
pacted. In our application case the structure given in
Fig.2 is modified such that we obtain a more feasible
one as shown in Fig.3.
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Fig. 3. The main geometry of topological design.

This structure is then parameterized with a vec-
tor X of geometrical parameters (see Fig.3). The new
structure is designed again in order to offset the cost
and the constraint values modifications. For this pur-
pose, we solve a parametric design problem that is the
same as (Pµ) but expressed with the geometrical pa-
rameters vector X instead t of he topological design
variable µ:

(PX )



min
X ,J

F1(X ,J) =
∫

ΩT1

‖B−B0‖2
2 dΩ

uc :

F2(X ,J) =
∫

ΩT2

∥∥∥∥arctan
(Bz

Br

)∥∥∥∥2

2
dΩ ≤ ε,

(3)

Unlike topology optimization, herein a non linear ma-
terial is assigned to the ferromagnetic structure. The
gradient of the cost and the constraint functions re-
spect to the vector of geometrical parameters X are
estimated by a finite difference method. It is clear that
this could be cpu time consuming. But, in our numeri-
cal experiments this is still acceptable for two reasons.
First, X length is very small compared to µ , and sec-
ond, the initial structure is not far away from the opti-
mal structure given that it is based on slight modifica-
tion of the topological solution. The solution of para-
metric optimization is given in Fig.4. The obtained
magnetic specifications are compared to the required
ones in Fig.5.

Fig. 4. The final feasible design of the HET.
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4 Conclusion

A Complete methodology to design magnetic circuit
is presented through the HET application. It consists
of: -TO that gives the key idea about how the struc-
ture should look like; -PO that reshapes the topology
found in order to make it feasible.

113



3

References

1. S. Sanogo, F. Messine, C. Henaux and R. Vilamot,
Topology Optimization for Magnetic Circuits dedicated
to Electric Propulsion, IEEE Trans. on Mag: Vol. 50,
No. 12, December 2014.

2. A. Rossi, F. Messine, C. Hénaux, A parametric optimiza-
tion code based on local algorithms to design magnetic
circuits of Hall effect thrusters, International Journal
of Applied Electromagnetics and Mechanics 53 (2017)
S153–S165, 2017.

114


	Programme_and_abstracts_SCEE2018_new
	Book_part2_new
	Invited_talks
	SCEE_2018_paper_5
	AufderMaur
	Biondi
	SCEE_2018_paper_30
	SCEE_2018_paper_44
	Gopalakrishnan_InitialShortAbstract
	SCEE_2018_paper_32
	SCEE_2018_paper_43

	empty
	Program_part_2
	Contributed_talks
	SCEE_2018_paper_16
	SCEE_2018_paper_40
	SCEE_2018_paper_41
	SCEE_2018_paper_33
	SCEE_2018_paper_36
	SCEE_2018_paper_14
	SCEE_2018_paper_4
	SCEE_2018_paper_11
	SCEE_2018_paper_13
	SCEE_2018_paper_27
	SCEE_2018_paper_38
	SCEE_2018_paper_21
	SCEE_2018_paper_15
	SCEE_2018_paper_8
	SCEE_2018_paper_2
	SCEE_2018_paper_12
	SCEE_2018_paper_19
	SCEE_2018_paper_23
	SCEE_2018_paper_31
	SCEE_2018_paper_22
	SCEE_2018_paper_9
	SCEE_2018_paper_7
	SCEE_2018_paper_37
	SCEE_2018_paper_39
	SCEE_2018_paper_20
	SCEE_2018_paper_10

	Program_part_3
	Poster_session_2
	SCEE_2018_paper_28
	SCEE_2018_paper_3
	SCEE_2018_paper_42
	SCEE_2018_paper_29
	SCEE_2018_paper_24
	SCEE_2018_paper_26
	SCEE_2018_paper_18
	SCEE_2018_paper_17
	25_new_monte-carlo-simulation
	SCEE_2018_paper_47
	SCEE_2018_paper_34
	SCEE_2018_paper_48
	SCEE_2018_paper_46
	SCEE_2018_paper_1
	SCEE_2018_paper_35
	SCEE_2018_paper_45
	SCEE_2018_paper_6





